login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangular array: T(n,k) = f(n)/(f(k)*f(n-k)), where f(n) = (floor(n/2))!.
8

%I #9 Apr 11 2012 12:57:16

%S 1,1,1,1,1,1,1,1,1,1,1,2,2,2,1,1,1,2,2,1,1,1,3,3,6,3,3,1,1,1,3,3,3,3,

%T 1,1,1,4,4,12,6,12,4,4,1,1,1,4,4,6,6,4,4,1,1,1,5,5,20,10,30,10,20,5,5,

%U 1,1,1,5,5,10,10,10,10,5,5,1,1,1,6,6,30,15

%N Triangular array: T(n,k) = f(n)/(f(k)*f(n-k)), where f(n) = (floor(n/2))!.

%H Peter Bala, <a href="/A211226/a211226.txt">Notes on A211226</a>

%F T(n,k) := f(n)/(f(k)*f(n-k)), where f(n) := (floor(n/2))!.

%F T(2*n+1,2*k) = T(2*n+1,2*k+1) = T(2*n,2*k) = binomial(n,k);

%F T(2*n,2*k+1) = n*binomial(n-1,k).

%F Recurrence equations:

%F T(2*n,2*k) = T(2*n-1,2*k) + T(2*n-1,2*k-1);

%F T(2*n,2*k+1) = T(2*n-1,2*k+1) + (n-1)*T(2*n-1,2*k);

%F T(2*n+1,2*k) = T(2*n,2*k); T(2*n+1,2*k+1) = T(2*n,2*k).

%F The Star of David property holds:

%F T(n,k+1)*T(n+1,k)*T(n+2,k+2) = T(n,k)*T(n+2,k+1)*T(n+1,k+2).

%F O.g.f.: (1 + t*(1+x) - t^2*(1-x+x^2) - t^3*(1+x+x^2+x^3))/(1 - t^2*(1+x^2))^2 = sum {n>=0} R(n,x)*t^n = 1 + (1+x)*t + (1+x+x^2)*t^2 + (1+x+x^2+x^3)*t^3 + ....

%F E.g.f.: cosh(t*sqrt(1+x^2)) + (1+x+x*t/2)/sqrt(1+x^2)*sinh(t*sqrt(1+x^2)) = sum {n>=0} R(n,x)*t^n/n! = 1 + (1+x)*t + (1+x+x^2)*t^2/2! + (1+x+x^2+x^3)*t^3/3! + ....

%F Row generating polynomials: R(2*n+1,x) = (1+x)*(1+x^2)^n; R(2*n,x) = (1+n*x+x^2)*(1+x^2)^(n-1).

%F Row sums: A211227. Shallow diagonal sums A211228. Central terms T(2*n,n) equal A056040(n).

%F The inverse array A211229 involves the derangement numbers A000166. The squared array is A211230.

%e Triangle begins

%e .n\k.|....0....1....2....3....4....5....6....7....8....9...10...11

%e = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

%e ..0..|....1

%e ..1..|....1....1

%e ..2..|....1....1....1

%e ..3..|....1....1....1....1

%e ..4..|....1....2....2....2....1

%e ..5..|....1....1....2....2....1....1

%e ..6..|....1....3....3....6....3....3....1

%e ..7..|....1....1....3....3....3....3....1....1

%e ..8..|....1....4....4...12....6...12....4....4....1

%e ..9..|....1....1....4....4....6....6....4....4....1....1

%e .10..|....1....5....5...20...10...30...10...20....5....5....1

%e .11..|....1....1....5....5...10...10...10...10....5....5....1....1

%e ...

%Y Cf. A007318, A056040, A211227 (row sums), A211228 (shallow diagonal sums), A211229 (inverse), A211230 (array squared).

%K nonn,easy,tabl

%O 0,12

%A _Peter Bala_, Apr 05 2012