OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..270
FORMULA
E.g.f.: Sum_{n>=0} (exp(n*x) + exp(-n*x))/2 * (exp(2*x)-1)^n / (exp(2*x)+1)^n.
a(n) ~ c * n! / r^n, where r = 0.609377863436... is the root of the equation tanh(r) = exp(-r), c = 0.357427152747929862626923523384943136230795883784223... . In closed form, r = log((1 + (19-3*sqrt(33))^(1/3) + (19+3*sqrt(33))^(1/3))/3). - Vaclav Kotesovec, Nov 05 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 7*x^3/3! + 56*x^4/4! + 541*x^5/5! + 5312*x^6/6! +...
where
A(x) = 1 + cosh(x)*tanh(x) + cosh(2*x)*tanh(x)^2 + cosh(3*x)*tanh(x)^3 + cosh(4*x)*tanh(x)^4 + cosh(5*x)*tanh(x)^5 + cosh(6*x)*tanh(x)^6 +...
PROG
(PARI) {a(n)=n!*polcoeff(sum(k=0, n, cosh(k*x +x*O(x^n)) * tanh(x +x*O(x^n))^k ), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 05 2013
STATUS
approved