login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways to write 2n = p+2q+3r with p,q,r terms of A210479
1

%I #14 Dec 08 2018 11:21:43

%S 0,0,0,0,0,0,0,0,1,1,2,2,3,3,3,4,4,3,4,3,3,3,4,4,5,5,5,5,4,7,6,6,7,5,

%T 6,7,7,7,7,5,5,8,6,7,8,5,8,10,9,9,11,9,8,12,9,8,10,7,7,10,8,7,9,7,6,

%U 12,8,9,11,7,8,10,8,7,11,8,7,11,7,7,10,6,5,8,7,6,10,7,7,10,7,6,11,7,7,10,5,5,10,5

%N Number of ways to write 2n = p+2q+3r with p,q,r terms of A210479

%C Conjecture: a(n)>0 for all n>8. Moreover, for positive integers a<=b<=c, all integers n>=3(a+b+c) with n-a-b-c even can be written as a*p+b*q+c*r with p,q,r terms of A210479, if and only if (a,b,c) is among the following 6 triples: (1,2,3), (1,2,4), (1,2,8), (1,2,9), (1,3,5), (1,3,8).

%C The author also conjectured that if n>8 is odd, different from 201 and 447, and not congruent to 1 or -1 modulo 12, then n can be written as a sum of three terms of A210479.

%H Zhi-Wei Sun, <a href="/A211190/b211190.txt">Table of n, a(n) for n = 1..5000</a>

%H G. Melfi, <a href="http://dx.doi.org/10.1006/jnth.1996.0012">On two conjectures about practical numbers</a>, J. Number Theory 56 (1996) 205-210 [<a href="http://www.ams.org/mathscinet-getitem?mr=1370203">MR96i:11106</a>].

%H Zhi-Wei Sun, <a href="http://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;20e70044.1301">Sandwiches with primes and practical numbers</a>, a message to Number Theory List, Jan. 13, 2013.

%H Zhi-Wei Sun, <a href="http://arxiv.org/abs/1211.1588">Conjectures involving primes and quadratic forms</a>, arXiv:1211.1588 [math.NT], 2012-2017.

%e a(10)=1 since 2*10=5+2*3+3*3 with 3 and 5 terms of A210479.

%t f[n_]:=f[n]=FactorInteger[n]

%t Pow[n_, i_]:=Pow[n, i]=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2])

%t Con[n_]:=Con[n]=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}]

%t pr[n_]:=pr[n]=n>0&&(n<3||Mod[n, 2]+Con[n]==0)

%t p[k_]:=p[k]=pr[Prime[k]-1]==True&&pr[Prime[k]+1]==True

%t q[n_]:=q[n]=PrimeQ[n]==True&&pr[n-1]==True&&pr[n+1]==True

%t a[n_]:=a[n]=Sum[If[p[j]==True&&p[k]==True&&q[2n-2Prime[j]-3Prime[k]]==True,1,0],{j,1,PrimePi[n]},{k,1,PrimePi[(2n-2Prime[j])/3]}]

%t Do[Print[n," ",a[n]],{n,1,100}]

%Y Cf. A005153, A210479, A210480, A210681, A211165.

%K nonn

%O 1,11

%A _Zhi-Wei Sun_, Feb 03 2013