Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #55 Dec 17 2016 10:19:58
%S 39365185894561,52657210792621,11377272352951,15070413782971,
%T 3343433905957,16603327018981,3461715915661,52384617784801,
%U 3477707481751,18996486073489,55712149574381,118670087467
%N a(n) is the smallest pseudoprime q in A074773 such that f(q) = n, where f: N -> {1..63} is given below.
%C Also, list of the 63 smallest strong pseudoprimes to bases 2,3,5, and 7, indexed by function f. See the expression of f in the first PARI program.
%C We can use the algorithm given below to make a primality test to see if an integer x, x < A074773(64) = 60153869469241, is prime.
%C 1. Run Miller-Rabin test with base 2, if x is not prime return composite.
%C 2. Run Miller-Rabin test with base 3, if x is not prime return composite.
%C 3. Run Miller-Rabin test with base 5, if x is not prime return composite.
%C 4. Run Miller-Rabin test with base 7, if x is not prime return composite.
%C 5. Compute i = f(x); if a(i) = x, return composite otherwise return prime.
%C In first reference, pp 1022, there is a test where a table of strong pseudoprimes is used. Terms computed using data from Charles R Greathouse IV. See A074773. Second link references the file "C:/temp/A074773.txt" used by the first PARI program. This file is a string with the first 63 terms of A074773, each term preceded by its number of digits.
%H Washington Bomfim, <a href="/A211112/a211112_1.txt">A.txt</a>
%H C. Pomerance, J. L. Selfridge, and S. S. Wagstaff, Jr., <a href="http://dx.doi.org/10.1090/S0025-5718-1980-0572872-7">The pseudoprimes to 25*10^9</a>, Mathematics of Computation 35 (1980), pp. 1003-1026.
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test">Miller-Rabin primality test</a>
%e Because f(A074773(15)) = 5, a(5) = A074773(15).
%o (PARI)
%o f(x)={ f1=x % 20650997 % 63; f2=x % 13936751 % 63; v1=3521775543809890147;
%o v2 = 1700305497776372630; v3 = 4844350019353692337;
%o h1=(f1<=20)*((v1>>(3*f1))%8)+(f1>=42)*((v3>>(3*(f1-42)))%8)+(f1>20&&f1<42)*((v2>>(3*(f1-21)))%8);
%o h2=(f2<=20)*((v1>>(3*f2))%8)+(f2>=42)*((v3>>(3*(f2-42)))%8)+(f2>20&&f2<42)*((v2>>(3*(f2-21)))%8);
%o y = (h1==h2)*f2 + (h1>h2)*f1+(h2>h1)*f2 + 1; return (y);};
%o \\
%o s=Str(read("C:/temp/A074773.txt" )); x=Vec(s);n=0;k=0;j=0;i=1;p=vector(63); y=0;
%o for(n=1,63,k=i+2;s="";for(j=1,eval(concat(x[i],x[i+1])),s=concat(s,x[k]);k++); p[n]=eval(s);i=k);
%o a=vector(63); for(i=1,63, y =f(p[i]); a[y]=p[i]); for(i=1,63, print(i," ",a[i]));
%Y Cf. A074773, A208847, A210588.
%K nonn,fini,full
%O 1,1
%A _Washington Bomfim_, Apr 11 2012
%E Edited by _M. F. Hasler_, Dec 09 2016 and Dec 17 2016