login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of all region numbers of all parts of all partitions of n.
3

%I #16 Mar 11 2014 01:34:20

%S 1,5,14,43,98,255,532,1201,2413,4968,9427,18475

%N Sum of all region numbers of all parts of all partitions of n.

%C Each part of a partition of n belongs to a different region of n. The "region number" of a part of the r-th region of n is equal to r. For the definition of "region of n" see A206437.

%H Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpar02.jpg">Illustration of the seven regions of 5</a>

%e For n = 5 we have:

%e ---------------------------------------------------

%e . Two arrangements

%e k of the partitions of 5

%e ---------------------------------------------------

%e 7 [5] [5]

%e 6 [3+2] [3+2]

%e 5 [4+1] [4 +1]

%e 4 [2+1+1] [2+2 +1]

%e 3 [3+1+1] [3 +1 +1]

%e 2 [2+1+1+1] [2+1 +1 +1]

%e 1 [1+1+1+1+1] [1+1+1 +1 +1]

%e ---------------------------------------------------

%e . Two arrangements

%e . of the region numbers Sum of

%e k of the partitions of 5 zone k

%e ---------------------------------------------------

%e 7 [7] [7] 7

%e 6 [6,7] [6,7] 13

%e 5 [5,7] [5, 7] 12

%e 4 [4,5,7] [4,5, 7] 16

%e 3 [3,5,7] [3, 5, 7] 15

%e 2 [2,3,5,7] [2,3, 5, 7] 17

%e 1 [1,2,3,5,7] [1,2,3, 5, 7] 18

%e ---------------------------------------------------

%e The total sum is a(5) = 1+2^2+3^2+4+5^2+6+7^2 = 1+4+9+4+25+6+49 = 18+17+15+16+12+13+7 = 98.

%Y Partial sums of A210969. Row sums of triangle A210971.

%Y Cf. A135010, A138121, A182703, A194446, A210437, A210966.

%K nonn,more

%O 1,2

%A _Omar E. Pol_, Jun 30 2012