login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) = sum of all parts <= k in the last section of the set of partitions of n.
4

%I #17 Feb 19 2020 20:13:16

%S 1,1,3,2,2,5,3,7,7,11,5,7,10,10,15,7,15,21,25,25,31,11,17,23,27,32,32,

%T 39,15,31,40,52,57,63,63,71,22,36,54,62,72,78,85,85,94,30,60,78,98,

%U 113,125,132,140,140,150,42,72,102,122,142,154,168,176,185,185,196

%N Triangle read by rows: T(n,k) = sum of all parts <= k in the last section of the set of partitions of n.

%C Row n lists the partial sums of row n of triangle A207383.

%H Andrew Howroyd, <a href="/A210956/b210956.txt">Table of n, a(n) for n = 1..1275</a>

%F T(n,k) = Sum_{j=1..k} A207383(n,j).

%e Triangle begins:

%e 1;

%e 1, 3;

%e 2, 2, 5;

%e 3, 7, 7, 11;

%e 5, 7, 10, 10, 15;

%e 7, 15, 21, 25, 25, 31;

%e 11, 17, 23, 27, 32, 32, 39;

%e 15, 31, 40, 52, 57, 63, 63, 71;

%e 22, 36, 54, 62, 72, 78, 85, 85, 94;

%o (PARI) Row(n)={my(v=vector(n)); v[1]=numbpart(n-1); if(n>1, forpart(p=n, for(k=1, #p, v[p[k]]++), [2,n])); for(k=2, n, v[k]=v[k-1]+k*v[k]); v}

%o { for(n=1, 10, print(Row(n))) }

%Y Column 1 is A000041. Right border gives A138879.

%Y Cf. A135010, A138121, A182703, A206437, A206562, A207031, A207032, 207383, 208476, A210948, A210955.

%K nonn,tabl

%O 1,3

%A _Omar E. Pol_, May 01 2012

%E Terms a(46) and beyond from _Andrew Howroyd_, Feb 19 2020