Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Aug 02 2021 14:25:36
%S 1,1,4,26,243,2992,45906,845287,18182926,447797646,12327513326,
%T 374460094229,12417692352452,445937963850159,17230880407496706,
%U 712587605616915013,31399448829720502520,1468521294946336416768,72650756455913144620677,3790469182850937732166657
%N Number of transitive reflexive early confluent binary relations R on n labeled elements where |{y : xRy}| <= 9 for all x.
%C R is early confluent iff (xRy and xRz) implies (yRz or zRy) for all x, y, z.
%D A. P. Heinz (1990). Analyse der Grenzen und Möglichkeiten schneller Tableauoptimierung. PhD Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany.
%H Alois P. Heinz, <a href="/A210917/b210917.txt">Table of n, a(n) for n = 0..200</a>
%F E.g.f.: t_9(x), where t_k(x) = exp (Sum_{m=1..k} x^m/m! * t_{k-m}(x)) for k>=0 and t_k(x) = 0 otherwise.
%p t:= proc(k) option remember;
%p `if`(k<0, 0, unapply(exp(add(x^m/m!*t(k-m)(x), m=1..k)), x))
%p end:
%p gf:= t(9)(x):
%p a:= n-> n!*coeff(series(gf, x, n+1), x, n):
%p seq(a(n), n=0..30);
%t t[k_] := t[k] = If[k<0, 0, Function[x, Exp[Sum[x^m/m!*t[k-m][x], {m, 1, k}]]]]; gf = t[9][x]; a[n_] := n!*SeriesCoefficient[gf, {x, 0, n}]; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Feb 13 2014, translated from Maple *)
%Y Column k=9 of A135302.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Mar 29 2012