login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0)=1; thereafter a(n) = -2*Sum_{k=1..n} binomial(2n,2k)*a(n-k).
16

%I #79 Sep 03 2022 12:13:07

%S 1,-2,22,-602,30742,-2523002,303692662,-50402079002,11030684333782,

%T -3077986048956602,1066578948824962102,-449342758735568563802,

%U 226182806795367665865622,-134065091768709178087428602,92423044260377387363207812342,-73323347841467639992211297199002

%N a(0)=1; thereafter a(n) = -2*Sum_{k=1..n} binomial(2n,2k)*a(n-k).

%C The version without signs has an interpretation as a sum over marked Schröder paths. See the Josuat-Verges and Kim reference.

%C Consider the sequence defined by a(0)=1; thereafter a(n) = c*Sum_{k=1..n} binomial(2n,2k)*a(n-k). For c = -3, -2, -1, 1, 2, 3, 4 this is A210676, A210657, A028296, A094088, A210672, A210674, A249939.

%C Apparently a(n) = 2*(-1)^n*A002114(n). - _R. J. Mathar_, Mar 01 2015

%H Seiichi Manyama, <a href="/A210657/b210657.txt">Table of n, a(n) for n = 0..200</a>

%H Matthieu Josuat-Vergès and Jang Soo Kim, <a href="http://arxiv.org/abs/1101.5608">Touchard-Riordan formulas, T-fractions, and Jacobi's triple product identity</a>, arXiv:1101.5608 [math.CO], 2011.

%H Zhi-Hong Sun, <a href="http://arxiv.org/abs/1203.5977">On the further properties of U_n</a>, arXiv:1203.5977 [math.NT], 2012.

%F O.g.f.: Sum_{n>=0} (2*n)! * (-x)^n / Product_{k=1..n} (1 - k^2*x). - _Paul D. Hanna_, Sep 17 2012

%F E.g.f.: 1/(2*cosh(x) - 1) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)!. - _Paul D. Hanna_, Oct 30 2014

%F E.g.f.: cos(z/2)/cos(3z/2) = Sum_{n>=0} abs(a(n))*x^(2*n)/(2*n)!. - _Olivier Gérard_, Feb 12 2014

%F From _Peter Bala_, Mar 09 2015: (Start)

%F a(n) = 3^(2*n)*E(2*n,1/3), where E(n,x) is the n-th Euler polynomial.

%F O.g.f.: Sum_{n >= 0} 1/2^n * Sum_{k = 0..n} (-1)^k*binomial(n,k)/(1 - x*(3*k + 1)^2).

%F O.g.f. as a continued fraction: 1/(1 + (3^2 - 1^2)*x/(4 + 12^2*x/(4 + (18^2 - 2^2)*x/(4 + 24^2*x/(4 + (30^2 - 2^2)*x/(4 + 36^2*x/(4 + ... ))))))) = 1 - 2*x + 22*x^2 - 602*x^3 + 30742*x^4 - .... See Josuat-Vergès and Kim, p. 23.

%F The expansion of exp( Sum_{n >= 1} a(n)*x^n/n ) appears to have integer coefficients. See A255882. (End)

%F a(n) = 2*36^n*(zeta(-n*2,1/6)-zeta(-n*2,2/3)), where zeta(a,z) is the generalized Riemann zeta function. - _Peter Luschny_, Mar 11 2015

%F a(n) ~ 2 * (-1)^n * (2*n)! * 3^(2*n+1/2) / Pi^(2*n+1). - _Vaclav Kotesovec_, Mar 14 2015

%F a(n) = Sum_{k=0..n} A241171(n, k)*(-2)^k. - _Peter Luschny_, Sep 03 2022

%p A210657:=proc(n) option remember;

%p if n=0 then 1

%p else -2*add(binomial(2*n,2*k)*procname(n-k),k=1..floor(n)); fi;

%p end;

%p [seq(f(n),n=0..20)];

%p # Second program:

%p a := (n) -> 2*36^n*(Zeta(0,-n*2,1/6)-Zeta(0,-n*2,2/3)):

%p seq(a(n), n=0..15); # _Peter Luschny_, Mar 11 2015

%t nmax=20; Table[(CoefficientList[Series[1/(2*Cosh[x]-1), {x, 0, 2*nmax}], x] * Range[0, 2*nmax]!)[[2*n+1]], {n,0,nmax}] (* _Vaclav Kotesovec_, Mar 14 2015 *)

%t Table[9^n EulerE[2 n, 1/3], {n, 0, 20}] (* _Vladimir Reshetnikov_, Jun 05 2016 *)

%o (PARI) a(n)=polcoeff(sum(m=0, n, (2*m)!*(-x)^m/prod(k=1, m, 1-k^2*x +x*O(x^n)) ), n)

%o for(n=0,20,print1(a(n),", ")) \\ _Paul D. Hanna_, Sep 17 2012

%Y Cf. A002114, A028296, A094088, A210657, A210672, A210674, A210676, A249939, A255882, A241171.

%K sign

%O 0,2

%A _N. J. A. Sloane_, Mar 28 2012