Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Nov 29 2023 06:57:42
%S 1,2,1,2,3,1,2,4,3,1,2,4,5,3,1,2,4,6,5,3,1,2,4,6,7,5,3,1,2,4,6,8,7,5,
%T 3,1,2,4,6,8,9,7,5,3,1,2,4,6,8,10,9,7,5,3,1,2,4,6,8,10,11,9,7,5,3,1,2,
%U 4,6,8,10,12,11,9,7,5,3,1,2,4,6,8,10,12
%N Second inverse function (numbers of columns) for pairing function A209293.
%H Boris Putievskiy, <a href="/A210535/b210535.txt">Rows n = 1..140 of triangle, flattened</a>
%H Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations [of] Integer Sequences And Pairing Functions</a> arXiv:1212.2732 [math.CO], 2012.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PairingFunction.html">Pairing functions</a>
%F a(n) = 2*A200260(n)-A101688(n)*(4*A002260(n)-2*A003056(n)-3).
%F a(n) = 2*i-v*(4*i-2*t-3), where t = floor((-1+sqrt(8*n-7))/2), i = n-t*(t+1)/2, v = floor((2*n+1-t*(t+1))/(t+3)).
%e The start of the sequence as triangle array read by rows:
%e 1;
%e 2,1;
%e 2,3,1;
%e 2,4,3,1;
%e 2,4,5,3,1;
%e 2,4,6,5,3,1;
%e 2,4,6,7,5,3,1;
%e 2,4,6,8,7,5,3,1;
%e . . .
%e Row number r contains permutation numbers from 1 to r: 2,4,6,...2*floor(r/2),2*floor(r/2)-1,2*floor(r/2)-3,...3,1.
%o (Python)
%o t=int((math.sqrt(8*n-7)-1)/2)
%o i=n-t*(t+1)/2
%o v=int((2*n+1-t*(t+1))/(t+3))
%o result=2*i-v*(4*i-2*t-3)
%Y Cf. A209293, A200260, A101688, A003056, A220073.
%K nonn
%O 1,2
%A _Boris Putievskiy_, Jan 28 2013