login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers N such that concatenation of N, N, and x generates a prime for x=1 and x=3 and x=7 and x=9.
0

%I #25 Jul 07 2021 16:56:41

%S 1235,4061,8255,22775,24665,36500,44501,52343,54434,57644,58109,59567,

%T 59588,65018,69407,71789,78689,94280,98594,106748,114272,122504,

%U 134369,137129,138905,144302,162236,196439,235808,238235,269912,277919,278633,282461,290534

%N Numbers N such that concatenation of N, N, and x generates a prime for x=1 and x=3 and x=7 and x=9.

%C The primes generated are part of the sequences A210511, A210512, A210513 and A210514.

%t Select[Range[3*10^5],AllTrue[FromDigits/@Table[Join[IntegerDigits[#],IntegerDigits [#],{n}],{n,{1,3,7,9}}],PrimeQ]&] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Jul 07 2021 *)

%o (Python)

%o import numpy as np

%o from functools import reduce

%o def factors(n):

%o return reduce(list.__add__, ([i, n//i] for i in range(1, int(n**0.5) + 1) if n % i == 0))

%o for i in range(1,50000):

%o p1=int(str(i)+str(i)+"1")

%o p3=int(str(i)+str(i)+"3")

%o p7=int(str(i)+str(i)+"7")

%o p9=int(str(i)+str(i)+"9")

%o if len(factors(p1))<3 and len(factors(p3))<3 and len(factors(p7))<3 and len(factors(p9))<3:

%o print(i, end=',')

%Y Cf. A210511, A210512, A210513, A210514.

%K base,nonn,easy

%O 1,1

%A _Abhiram R Devesh_, Jan 26 2013