login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210310
G.f.: [ Sum_{n>=0} (n+1)*(n+2)/2 * 4^(n^2) * x^n ]^(1/3).
0
1, 4, 496, 869824, 21467623936, 7881126729140224, 44075357435370071351296, 3802951448073847111253622882304, 5104235473390420925196874786915866443776, 107176786696765659714361271737312271270497663320064
OFFSET
0,2
FORMULA
a(n) == 1 (mod 3).
EXAMPLE
G.f.: A(x) = 1 + 4*x + 496*x^2 + 869824*x^3 + 21467623936*x^4 +...
where
A(x)^3 = 1 + 3*4*x + 6*4^4*x^2 + 10*4^9*x^3 + 15*4^16*x^4 + 21*4^25*x^5 +...
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, (m+1)*(m+2)/2*4^(m^2)*x^m+x*O(x^n))^(1/3), n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A202942.
Sequence in context: A357536 A330579 A221554 * A324155 A350968 A378310
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 20 2012
STATUS
approved