login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210271
Half the number of (n+1)X4 0..2 arrays with every 2X2 subblock having two or three distinct clockwise edge differences
1
2130, 113248, 6028871, 321050788, 17097482699, 910532241954, 48490791961375, 2582399328204990, 137526868179029404, 7324056952893265933, 390046040465491252479, 20772082296310330599391, 1106226850689067938595724
OFFSET
1,1
COMMENTS
Column 3 of A210276
LINKS
FORMULA
Empirical: a(n) = 48*a(n-1) +480*a(n-2) -9807*a(n-3) -58253*a(n-4) +657082*a(n-5) +2138431*a(n-6) -18778839*a(n-7) -19795420*a(n-8) +235514744*a(n-9) -62769938*a(n-10) -1259927930*a(n-11) +1276469157*a(n-12) +2637995603*a(n-13) -4298139072*a(n-14) -1484220465*a(n-15) +5231313990*a(n-16) -949603112*a(n-17) -2426962356*a(n-18) +931229528*a(n-19) +400609008*a(n-20) -188316850*a(n-21) -12522776*a(n-22) +5412968*a(n-23) -237208*a(n-24) -448*a(n-25)
EXAMPLE
Some solutions for n=4
..0..0..2..1....0..1..0..2....2..1..0..0....1..0..2..0....0..2..0..1
..2..0..1..2....2..2..0..1....1..1..1..0....1..0..0..0....2..0..2..1
..0..2..2..1....2..0..2..1....2..1..2..2....2..1..0..1....0..2..2..1
..2..2..0..1....2..1..1..1....2..0..2..1....2..0..0..0....2..0..0..1
..2..1..0..1....1..2..2..2....1..1..1..0....2..0..1..1....2..2..2..1
CROSSREFS
Sequence in context: A278797 A251134 A338070 * A066817 A110024 A260068
KEYWORD
nonn
AUTHOR
R. H. Hardin Mar 19 2012
STATUS
approved