Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #25 Nov 12 2020 12:05:17
%S 1,2,3,4,5,6,8,8,9,10,11,13,14,16,16,16,17,18,19,20,22,24,24,25,26,27,
%T 29,30,32,32,32,32,33,34,35,36,37,40,40,41,42,43,45,46,48,48,48,49,50,
%U 51,52,54,56,56,57,58,59,61,62,64,64,64,64,64,65,66,67
%N Number of distinct residues of all factorials mod 2^n.
%C Theorem. For n>=1, a(n) = A007843(n) - A210255(n).
%H Alois P. Heinz, <a href="/A210253/b210253.txt">Table of n, a(n) for n = 0..1000</a>
%e Let n=2. We have modulo 4: 0!=1!==1, 2!==3!==2, for n>=4, n!==0. Thus the distinct residues are 0,1,2. Therefore, a(2) = 3.
%p a:= proc(n) local p, m, i, s;
%p p:= 2^n;
%p m:= 1;
%p s:= {};
%p for i to p while m<>0 do m:= m*i mod p; s:=s union {m} od;
%p nops(s)
%p end:
%p seq(a(n), n=0..100); # _Alois P. Heinz_, Mar 20 2012
%t a[n_] := Module[{p = 2^n, m = 1, i, s = {}}, For[i = 1, i <= p && m != 0, i++, m = Mod[m i, p]; s = Union[s, {m}]]; Length[s]];
%t a /@ Range[0, 100] (* _Jean-François Alcover_, Nov 12 2020, after _Alois P. Heinz_ *)
%Y Cf. A000142, A007814, A210255.
%K nonn
%O 0,2
%A _Vladimir Shevelev_, Mar 19 2012