OFFSET
0,6
COMMENTS
Also, a(n) gives the number of partitions of 2*n in which all parts are even and less than n.
Also, number of nonpalindromic partitions of n, n >= 1. In other words: a(n) is the number of partitions of n into parts which cannot be listed in palindromic order, n >= 1. - Omar E. Pol, Jan 11 2014
LINKS
David A. Corneth, Table of n, a(n) for n = 0..10000 (first 1001 terms from Alois P. Heinz)
FORMULA
EXAMPLE
a(7) = 8, because 3+3+1 = 3+2+2 = 3+2+1+1 = 3+1+1+1+1 = 2+2+2+1 = 2+2+1+1+1 = 2+1+1+1+1+1 = 1+1+1+1+1+1+1, exhausting the partitions of the indicated class for n=7.
MAPLE
b:= proc(n, i) option remember;
if n=0 then 1
elif i<1 then 0
else b(n, i-1) +`if`(i>n, 0, b(n-i, i))
fi
end:
a:= n-> b(n, ceil(n/2)-1):
seq (a(n), n=0..50); # Alois P. Heinz, Mar 19 2012
MATHEMATICA
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := b[n, Ceiling[n/2]-1]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jan 09 2016, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
L. Edson Jeffery, Mar 19 2012
EXTENSIONS
More terms from Alois P. Heinz, Mar 19 2012
STATUS
approved