Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Aug 26 2019 17:53:31
%S 1,1,2,1,3,6,1,4,6,12,24,1,5,10,20,30,60,120,1,6,15,20,30,60,90,120,
%T 180,360,720,1,7,21,35,42,105,140,210,420,630,840,1260,2520,5040,1,8,
%U 28,56,70,168,280,336,420,560,840,1120,1680,2520,3360,5040,6720
%N Triangle of distinct values M(n) of multinomial coefficients for partitions of n in increasing order of n and M(n).
%C Differs from A036038 after a(37). To illustrate where the difference comes from, consider 4,1,1,1 and 3,2,2 are two different partitions of 7 having the same value of multinomial coefficient M(n)=n!/(m1!*m2!*...*mk!)=210.
%C There is no known formula for M(n) sequence, however the asymptotic behavior has been studied, see the paper by Andrews, Knopfmacher, and Zimmermann.
%C The number of terms per row (for each value of n starting with n=1) forms sequence A070289.
%H Alois P. Heinz, <a href="/A210237/b210237.txt">Rows n = 1..29, flattened</a>
%H George E. Andrews, Arnold Knopfmacher, and Burkhard Zimmermann, <a href="http://arxiv.org/abs/math/0509470">On the Number of Distinct Multinomial Coefficients</a>, arXiv:math/0509470 [math.CO], 2005.
%H Sergei Viznyuk, <a href="http://phystech.com/ftp/s_A210237.c">C-program</a> for the sequence
%e Trianglebegins:
%e 1;
%e 1, 2;
%e 1, 3, 6;
%e 1, 4, 6, 12, 24;
%e 1, 5, 10, 20, 30, 60, 120;
%e 1, 6, 15, 20, 30, 60, 90, 120, 180, 360, 720;
%e 1, 7, 21, 35, 42, 105, 140, 210, 420, 630, 840, 1260, 2520, 5040;
%e ...
%e Thus for n=4 (fourth row) the distinct values of multinomial coefficients are:
%e 4!/(4!) = 1
%e 4!/(3!1!) = 4
%e 4!/(2!2!) = 6
%e 4!/(2!1!1!) = 12
%e 4!/(1!1!1!1!) = 24
%p b:= proc(n, i) option remember; `if`(n=0 or i<2, {1},
%p {seq(map(x-> x*i!^j, b(n-i*j, i-1))[], j=0..n/i)})
%p end:
%p T:= n-> sort([map(x-> n!/x, b(n, n))[]])[]:
%p seq(T(n), n=1..10); # _Alois P. Heinz_, Aug 13 2012
%t b[n_, i_] := b[n, i] = If[n==0 || i<2, {1}, Union[Flatten @ Table[(#*i!^j&) /@ b[n-i*j, i-1], {j, 0, n/i}]]]; T[n_] := Sort[Flatten[n!/#& /@ b[n, n]] ]; Table[T[n], {n, 1, 10}] // Flatten (* _Jean-François Alcover_, Feb 05 2017, after _Alois P. Heinz_ *)
%Y Cf. A036038, A210238, A078760, A209936, A080577, A070289.
%K nonn,tabf
%O 1,3
%A _Sergei Viznyuk_, Mar 18 2012