Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Mar 30 2012 18:58:16
%S 1,2,2,3,5,4,4,10,11,8,5,16,28,23,16,6,24,51,72,47,32,7,33,90,144,176,
%T 95,64,8,44,138,294,377,416,191,128,9,56,208,492,878,938,960,383,256,
%U 10,70,290,830,1577,2462,2251,2176,767,512,11,85,400,1250,2952
%N Triangle of coefficients of polynomials v(n,x) jointly generated with A210211; see the Formula section.
%C First and last terms of row n: n and 2^(n-1)
%C Alternating row sums are signed products of two Fibonacci numbers.
%C For a discussion and guide to related arrays, see A208510.
%F u(n,x)=x*u(n-1,x)+v(n-1,x)+1,
%F v(n,x)=u(n-1,x)+2x*v(n-1,x)+1,
%F where u(1,x)=1, v(1,x)=1.
%e First five rows:
%e 1
%e 2...2
%e 3...5...4
%e 4...10...11...8
%e 5...16...28...23...16
%e First three polynomials v(n,x): 1, 2 + 2x , 3 + 5x + 4x^2.
%t u[1, x_] := 1; v[1, x_] := 1; z = 16;
%t u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1;
%t v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x] + 1;
%t Table[Expand[u[n, x]], {n, 1, z/2}]
%t Table[Expand[v[n, x]], {n, 1, z/2}]
%t cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
%t TableForm[cu]
%t Flatten[%] (* A210211 *)
%t Table[Expand[v[n, x]], {n, 1, z}]
%t cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
%t TableForm[cv]
%t Flatten[%] (* A210212 *)
%Y Cf. A210211, A208510.
%K nonn,tabl
%O 1,2
%A _Clark Kimberling_, Mar 19 2012