login
In base 8, numbers n which have 8 distinct digits, do not start with 0, and have property that the product (written in base 8) of any two adjacent digits is a substring of n.
0

%I #8 Jun 10 2016 00:21:00

%S 14326057,14326075,26057143,26075143,26143057,26143075,50714326,

%T 51432607,51462307,57014326,57026143,57061432,57062143,57143026,

%U 57143062,57143206,57143260,60571432,60751432,61432057,61432075,62057143,62075143,62143057,62143075,70514326,71432605,71462305,72305164,73046125,73064125,75014326,75026143,75061432,75062143,75143026,75143062,75143206,75143260

%N In base 8, numbers n which have 8 distinct digits, do not start with 0, and have property that the product (written in base 8) of any two adjacent digits is a substring of n.

%C Computed by Jean-Paul Davalan.

%C The analog in base 2 is 10; in base 3, 102,120,201,210.

%H Eric Angelini, <a href="http://www.cetteadressecomportecinquantesignes.com/DixChiffres.htm">10 different digits, 9 products</a>

%H E. Angelini, <a href="/A198298/a198298.pdf">10 different digits, 9 products</a> [Cached copy, with permission]

%Y A generalization of A198298. Cf. A210013-A210020, A203569, A203566.

%K nonn,base,fini,full

%O 1,1

%A _N. J. A. Sloane_, Mar 16 2012