login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209956
Number of (n+1)X5 0..2 arrays with every 2X2 subblock having one, three or four distinct clockwise edge differences
1
36057, 5569307, 856216289, 131724081683, 20262771645033, 3117032354510683, 479493044479186433, 73760462168440328563, 11346578094817698854441, 1745445119872774497413403, 268501978374785069024344929
OFFSET
1,1
COMMENTS
Column 4 of A209960
LINKS
FORMULA
Empirical: a(n) = 188*a(n-1) -2606*a(n-2) -449432*a(n-3) +4278439*a(n-4) +344696470*a(n-5) -1695340318*a(n-6) -106831277262*a(n-7) +260315668742*a(n-8) +14665133182628*a(n-9) -32541316090784*a(n-10) -1037044125842224*a(n-11) +3010738321041520*a(n-12) +39283976226587808*a(n-13) -157080544206380960*a(n-14) -734266820477791744*a(n-15) +4221150804291177792*a(n-16) +4462953823466462848*a(n-17) -55438390445568782720*a(n-18) +33810272263704976640*a(n-19) +347725953909047112192*a(n-20) -562768188874634440704*a(n-21) -933791709840933227520*a(n-22) +2653805933866673033216*a(n-23) +418755395615456186368*a(n-24) -5521527001945241739264*a(n-25) +2418407310629868339200*a(n-26) +5278645092513311916032*a(n-27) -4226822592850201149440*a(n-28) -2085348951772738617344*a(n-29) +2615796490878429691904*a(n-30) +190791165053952327680*a(n-31) -696828367550619320320*a(n-32) +49927158958133346304*a(n-33) +76557678286106263552*a(n-34) -6934923112613937152*a(n-35) -2692851001743900672*a(n-36)
EXAMPLE
Some solutions for n=4
..2..2..0..0..1....0..0..2..0..0....0..1..2..2..0....0..0..0..1..2
..1..2..0..1..1....0..2..1..0..1....0..0..2..0..0....1..0..2..1..0
..1..2..2..0..0....1..1..1..1..1....2..0..1..0..0....2..2..1..1..2
..0..2..2..0..0....2..1..0..1..1....0..0..2..2..2....2..2..1..2..0
..1..0..1..1..2....0..0..2..0..0....0..0..2..0..0....1..2..1..0..1
CROSSREFS
Sequence in context: A034605 A031827 A097694 * A256365 A011766 A138556
KEYWORD
nonn
AUTHOR
R. H. Hardin Mar 16 2012
STATUS
approved