login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Half the number of (n+1)X5 0..2 arrays with every 2X2 subblock having at most one duplicate clockwise edge difference
1

%I #5 Mar 31 2012 12:37:30

%S 14832,1845126,228881560,28414622976,3526904366260,437792367422004,

%T 54342179402121844,6745399989408922240,837293938546572140624,

%U 103931774917513439888384,12900861490983323374922924

%N Half the number of (n+1)X5 0..2 arrays with every 2X2 subblock having at most one duplicate clockwise edge difference

%C Column 4 of A209951

%H R. H. Hardin, <a href="/A209947/b209947.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 137*a(n-1) +1375*a(n-2) -379196*a(n-3) -822985*a(n-4) +271649589*a(n-5) -1022269805*a(n-6) -70170761263*a(n-7) +641952993302*a(n-8) +4342534054342*a(n-9) -73954267458122*a(n-10) +102618635049097*a(n-11) +2531171062983520*a(n-12) -12080605781945952*a(n-13) -14798120421349900*a(n-14) +217104858821453334*a(n-15) -280602154303600016*a(n-16) -1389650405420282304*a(n-17) +3900152449918862176*a(n-18) +2254091203675155280*a(n-19) -17592328601776482368*a(n-20) +8668588599651710208*a(n-21) +33065579126579949824*a(n-22) -32933150152345127680*a(n-23) -27531067079695864576*a(n-24) +40499204279510826496*a(n-25) +8532070056474904576*a(n-26) -22150202432386494464*a(n-27) +486895998136811520*a(n-28) +5299226485845917696*a(n-29) -593747450140950528*a(n-30) -473505641334833152*a(n-31) +63092769119272960*a(n-32) +8035775765544960*a(n-33)

%e Some solutions for n=4

%e ..2..1..0..2..1....0..0..1..1..0....2..1..0..2..2....2..1..2..1..0

%e ..2..2..2..1..1....0..1..1..2..2....0..0..2..1..0....1..1..1..1..1

%e ..1..1..0..0..2....2..0..1..2..0....1..2..1..1..0....1..2..1..0..2

%e ..0..0..2..0..0....1..1..1..1..0....2..2..2..0..2....2..2..2..2..2

%e ..0..1..2..0..1....1..2..2..2..2....2..0..1..2..1....2..1..2..1..1

%K nonn

%O 1,1

%A _R. H. Hardin_ Mar 16 2012