login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of psi(x^4) * phi(-x^4)^4 / phi(x) in powers of x where phi(), psi() are Ramanujan theta function.
4

%I #23 Mar 12 2021 22:24:46

%S 1,-2,4,-8,7,-10,12,-8,18,-18,16,-24,21,-20,28,-32,20,-32,36,-24,42,

%T -42,28,-48,57,-36,52,-40,36,-58,60,-56,48,-66,48,-72,74,-42,80,-80,

%U 61,-82,72,-56,90,-96,64,-72,98,-70,100,-104,64,-106,108,-72,114,-96

%N Expansion of psi(x^4) * phi(-x^4)^4 / phi(x) in powers of x where phi(), psi() are Ramanujan theta function.

%C Number 47 of the 74 eta-quotients listed in Table I of Martin (1996).

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%H G. C. Greubel, <a href="/A209940/b209940.txt">Table of n, a(n) for n = 0..1000</a>

%H Y. Martin, <a href="http://dx.doi.org/10.1090/S0002-9947-96-01743-6">Multiplicative eta-quotients</a>, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.

%H Michael Somos, <a href="/A030203/a030203.txt">Index to Yves Martin's list of 74 multiplicative eta-quotients and their A-numbers</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of q^(-1/2) * eta(q)^2 * eta(q^4)^9 / (eta(q^2)^5 * eta(q^8)^2) in powers of q.

%F Euler transform of period 8 sequence [ -2, 3, -2, -6, -2, 3, -2, -4, ...].

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 512^(1/2) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A113419.

%F a(n) = b(2*n + 1) where b(n) is multiplicative and b(2^e) = 0^e, b(3^e) = (1 - (-3)^(e+1)) / 4, b(p^e) = (-1)^(e * [p/6]) * ((p*f)^(e+1) - 1) / (p*f - 1) where f = Kronecker( 18, p).

%F a(n) = (-1)^n * A258096(n) = (-1)^floor(n/2) * A113419(n) = (-1)^(n + floor(n/2)) * A113417(n).

%e G.f. = 1 - 2*x + 4*x^2 - 8*x^3 + 7*x^4 - 10*x^5 + 12*x^6 - 8*x^7 + 18*x^8 + ...

%e G.f. = q - 2*q^3 + 4*q^5 - 8*q^7 + 7*q^9 - 10*q^11 + 12*q^13 - 8*q^15 + 18*q^17 + ...

%t a[ n_] := SeriesCoefficient[ QPochhammer[ q]^2 QPochhammer[ q^4]^9 / (QPochhammer[ q^2]^5 QPochhammer[ q^8]^2), {q, 0, n}]; (* _Michael Somos_, May 19 2015 *)

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A)^9 / (eta(x^2 + A)^5 * eta(x^8 + A)^2), n))};

%o (PARI) {a(n) = my(A, p, e, f); if( n<0, 0, A = factor(2*n + 1); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==2, 0^e, p==3, ((-p)^(e+1) - 1) / ((-p) - 1), p *= kronecker( 18, p); (-1)^(e*(p\6)) * (p^(e+1) - 1) / (p - 1))))};

%Y Cf. A113417, A113419, A258096.

%K sign

%O 0,2

%A _Michael Somos_, Mar 16 2012