login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209935
G.f.: 1 = Sum_{n>=0} a(n)*x^n*Product_{k=1..n+1} (1-k^2*x) for n>0 with a(0)=1.
0
1, 1, 5, 66, 1735, 77587, 5339632, 527780778, 71236904519, 12635518401687, 2857729962091681, 804340796768258860, 276170316701087964628, 113757566198465278521124, 55424247710747076665462268, 31554099393732823158673973698
OFFSET
0,3
EXAMPLE
G.f.: 1 = 1*(1-x) + 1*x*(1-x)*(1-2^2*x) + 5*x^2*(1-x)*(1-2^2*x)*(1-3^2*x) + 66*x^3*(1-x)*(1-2^2*x)*(1-3^2*x)*(1-4^2*x) + 1735*x^4*(1-x)*(1-2^2*x)*(1-3^2*x)*(1-4^2*x)*(1-5^2*x) +...
PROG
(PARI) {a(n)=if(n==0, 1, polcoeff(1-sum(k=0, n-1, a(k)*x^k*prod(j=1, k+1, 1-j^2*x+x*O(x^n))), n))}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A082161.
Sequence in context: A367837 A331721 A367847 * A156597 A059489 A197161
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 15 2012
STATUS
approved