%I #26 Sep 15 2021 09:51:45
%S 0,1,2,3,4,5,6,7,8,9,10,12,11,13,14,15,16,17,18,20,24,19,21,25,22,26,
%T 28,23,27,29,30,31,32,33,34,36,40,48,35,37,41,49,38,42,50,44,52,56,39,
%U 43,51,45,53,57,46,54,58,60,47,55,59,61,62,63,64,65,66,68,72,80,96,67,69,73,81,97,70,74,82,98,76,84,100,88,104,112,71,75,83
%N Permutation of nonnegative integers which maps A209642 into ascending order (A209641).
%C Conjecture: For all n, a(A054429(n)) = A054429(a(n)), i.e. A054429 acts as a homomorphism (automorphism) of the cyclic group generated by this permutation. This implies also a weaker conjecture given in A209860.
%C From _Gus Wiseman_, Aug 24 2021: (Start)
%C As a triangle with row lengths 2^n, T(n,k) for n > 0 appears (verified up to n = 2^15) to be the unique nonnegative integer whose binary indices are the k-th subset of {1..n} containing n. Here, a binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion, and sets are sorted first by length, then lexicographically. For example, the triangle begins:
%C 1
%C 2 3
%C 4 5 6 7
%C 8 9 10 12 11 13 14 15
%C 16 17 18 20 24 19 21 25 22 26 28 23 27 29 30 31
%C Mathematica: Table[Total[2^(Append[#,n]-1)]&/@Subsets[Range[n-1]],{n,5}]
%C Row lengths are A000079 (shifted right). Also Column k = 1.
%C Row sums are A010036.
%C Using reverse-lexicographic order gives A059893.
%C Using lexicographic order gives A059894.
%C Taking binary indices to prime indices gives A339195 (or A019565).
%C The ordering of sets is A344084.
%C A version using Heinz numbers is A344085.
%C (End)
%H Antti Karttunen, <a href="/A209862/b209862.txt">Table of n, a(n) for n = 0..32767</a>
%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F a(n) = A209859(A036044(A209641(n))) = A209859(A056539(A209641(n))).
%e From _Gus Wiseman_, Aug 24 2021: (Start)
%e The terms, their binary expansions, and their binary indices begin:
%e 0: ~ {}
%e 1: 1 ~ {1}
%e 2: 10 ~ {2}
%e 3: 11 ~ {1,2}
%e 4: 100 ~ {3}
%e 5: 101 ~ {1,3}
%e 6: 110 ~ {2,3}
%e 7: 111 ~ {1,2,3}
%e 8: 1000 ~ {4}
%e 9: 1001 ~ {1,4}
%e 10: 1010 ~ {2,4}
%e 12: 1100 ~ {3,4}
%e 11: 1011 ~ {1,2,4}
%e 13: 1101 ~ {1,3,4}
%e 14: 1110 ~ {2,3,4}
%e 15: 1111 ~ {1,2,3,4}
%e (End)
%Y Inverse permutation: A209861. Cf. A209860, A209863, A209864, A209865, A209866, A209867, A209868.
%Y Cf. A010036, A026793, A048793, A111059, A147655, A246688, A246867, A261144, A272020, A294648, A339360.
%K nonn
%O 0,3
%A _Antti Karttunen_, Mar 24 2012