login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209852
1/4 the number of (n+1)X3 0..3 arrays with every 2X2 subblock having one or four distinct clockwise edge differences
1
182, 2829, 43091, 661963, 10137464, 155490654, 2383064182, 36538359367, 560099384524, 8586845703984, 131635724835755, 2018037972754560, 30936878781499330, 474272812069766100, 7270720913944659218
OFFSET
1,1
COMMENTS
Column 2 of A209858
LINKS
FORMULA
Empirical: a(n) = 11*a(n-1) +139*a(n-2) -972*a(n-3) -4071*a(n-4) +28751*a(n-5) +27819*a(n-6) -332527*a(n-7) +170449*a(n-8) +1380897*a(n-9) -1533070*a(n-10) -2378942*a(n-11) +3871609*a(n-12) +1392648*a(n-13) -4192842*a(n-14) +445370*a(n-15) +1893206*a(n-16) -633950*a(n-17) -236300*a(n-18) +99664*a(n-19) +2096*a(n-20)
EXAMPLE
Some solutions for n=4
..2..1..1....3..0..2....2..2..1....1..0..0....2..3..2....3..0..1....1..0..2
..1..3..0....0..1..0....3..0..2....0..2..3....2..0..3....1..1..3....3..0..3
..0..0..2....2..0..3....1..0..3....1..3..1....3..0..1....3..0..3....1..0..1
..1..3..0....1..2..2....3..0..1....0..1..0....0..1..3....0..1..3....0..2..0
..2..1..0....2..0..3....1..1..3....1..3..3....2..3..2....0..3..2....1..3..0
CROSSREFS
Sequence in context: A234982 A234975 A186125 * A321637 A023904 A035839
KEYWORD
nonn
AUTHOR
R. H. Hardin Mar 14 2012
STATUS
approved