login
1/4 the number of (n+1)X3 0..3 arrays with every 2X2 subblock having distinct edge sums
1

%I #5 Mar 31 2012 12:37:30

%S 124,1096,9712,86744,775096,6933120,62007896,554698328,4961776976,

%T 44385441816,397039390488,3551673425792,31770878566904,

%U 284202098661272,2542285677573168,22741649976952728,203432011675276088

%N 1/4 the number of (n+1)X3 0..3 arrays with every 2X2 subblock having distinct edge sums

%C Column 2 of A209736

%H R. H. Hardin, <a href="/A209730/b209730.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 11*a(n-1) +13*a(n-2) -364*a(n-3) +519*a(n-4) +2741*a(n-5) -6099*a(n-6) -4620*a(n-7) +15632*a(n-8) -1696*a(n-9) -8896*a(n-10) +3328*a(n-11)

%e Some solutions for n=4

%e ..2..0..2....1..1..3....3..1..3....2..1..3....1..0..0....2..0..0....1..1..2

%e ..3..3..2....3..0..0....3..0..2....2..0..2....1..3..1....2..1..2....2..3..3

%e ..1..0..2....1..1..2....1..1..3....2..3..2....2..3..0....3..1..3....0..0..1

%e ..3..3..2....2..3..3....3..2..3....2..0..2....1..3..1....0..1..0....1..2..2

%e ..0..1..1....0..0..1....1..1..3....1..0..1....0..2..1....2..3..2....3..3..0

%K nonn

%O 1,1

%A _R. H. Hardin_ Mar 12 2012