login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = count of monomials, of degree k=n, in the Schur symmetric polynomials s(mu,k) summed over all partitions mu of n.
12

%I #46 Nov 17 2018 15:33:42

%S 1,1,4,19,116,751,5552,43219,366088,3245311,30569012,299662672,

%T 3079276708,32773002718,362512238272,4136737592323,48773665308176,

%U 591313968267151,7375591544495636,94340754464144215,1237506718985945656,16608519982801477908,228013066931927465872

%N a(n) = count of monomials, of degree k=n, in the Schur symmetric polynomials s(mu,k) summed over all partitions mu of n.

%C Main diagonal of triangle A191714.

%C a(n) is also the number of semistandard Young tableaux of size and maximal entry n. - _Christian Stump_, Oct 09 2015

%H Alois P. Heinz, <a href="/A209673/b209673.txt">Table of n, a(n) for n = 0..500</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomials">Symmetric Polynomials</a>

%H FindStat - Combinatorial Statistic Finder, <a href="http://www.findstat.org/SemistandardTableaux">Semistandard Young tableaux</a>

%t (* see A191714 *)

%t Tr /@ Table[(stanley[#, l] & /@ Partitions[l]), {l, 11}]

%Y Cf. A191714, A209664, A209665, A209666, A209667, A209668, A209669, A209670, A209671, A209672, A209673.

%Y Main diagonal of A210391. - _Alois P. Heinz_, Mar 22 2012

%K nonn

%O 0,3

%A _Wouter Meeussen_, Mar 11 2012

%E a(12)-a(22) from _Alois P. Heinz_, Mar 11 2012

%E Typo in Mathematica program fixed by _Vaclav Kotesovec_, Mar 19 2015