The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A209633 Number of ordered set partitions of the multiset [a,a,1,1,...,1] with two "a" and n "1". 1
 1, 2, 7, 15, 33, 59, 111, 182, 307, 481, 757, 1134, 1713, 2483, 3611, 5117, 7238, 10029, 13888, 18900, 25682, 34442, 46057, 60934, 80428, 105159, 137137, 177495, 229069, 293694, 375582, 477499, 605526, 764060, 961603, 1204898, 1506142, 1875150, 2329185, 2882939 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS For [a,1,1,...1] one gets A093694, number of one-element transitions from the partitions of n to the partitions of n+1 for labeled parts. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 Thomas Wieder, Multiselection (2nd approach) EXAMPLE For n=4 we have the multiset [a,a,1,1,1,1] with the following a(4) = 33 ordered set partitions: For [4] one gets [[1,1,1,1]], [[1,1,1,a]], [[1,1,a,a]]. For [3,1] one gets [[1,1,1],[1]], [[1,1,1],[a]], [[1,1,a],[1]], [[1,1,a],[a]], [[1,a,a],[1]]. For [2,2] one gets [[1,1],[1,1]], [[1,1],[1,a]], [[1,1],[a,a]], [[1,a],[1,1]], [[1,a],[1,a]], [[a,a],[1,1]]. For [2,1,1] one gets [[1,1],[1],[1]], [[1,1],[1],[a]], [[1,1],[a],[1]], [[1,1],[a],[a]], [[1,a],[1],[1]], [[1,a],[1],[a]], [[1,a],[a],[1]], [[a,a],[1],[1]]. For [1,1,1,1] one gets [[1],[1],[1],[1]], [[1],[1],[1],[a]], [[1],[1],[a],[1]], [[1],[1],[a],[a]], [[1],[a],[1],[1]], [[1],[a],[1],[a]], [[1],[a],[a],[1]], [[a],[1],[1],[1]], [[a],[1],[1],[a]], [[a],[1],[a],[1]], [[a],[a],[1],[1]]. MAPLE p:= (f, g)-> zip((x, y)-> x+y, f, g, 0): b:= proc(n, i) option remember; local f, g; if n=0 then [1, 0, [1]] elif i<1 then [0, 0, [0]] else f:= b(n, i-1); g:= `if`(i>n, [0, 0, [0]], b(n-i, i)); [f[1]+g[1], f[2]+g[2] +`if`(i>1, g[1], 0), p(f[3], [0, g[3][]])] fi end: a:= proc(n) local l, ll; if n=0 then return 1 fi; l:= b(n, n); ll:= l[3]; l[2] +add(ll[t+1] *(1+t* (1+(t-1)/2)), t=1..nops(ll)-1) end: seq(a(n), n=0..50); # Alois P. Heinz, Mar 11 2012 MATHEMATICA zip = With[{m = Max[Length[#1], Length[#2]]}, PadRight[#1, m] + PadRight[#2, m]]&; b[n_, i_] := b[n, i] = Module[{f, g}, Which[n == 0, {1, 0, {1}}, i<1, {0, 0, {0}}, True, f = b[n, i-1]; g = If[i>n, {0, 0, {0}}, b[n-i, i]]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + If[i>1, g[[1]], 0], zip[f[[3]], Join[{0}, g[[3]]]]}]]; a[n_] := Module[{l, ll}, If[n == 0, Return[1]]; l = b[n, n]; ll = l[[3]]; l[[2]] + Sum[ll[[t+1]]*(1+t*(1+(t-1)/2)), {t, 1, Length[ll]-1}]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 13 2017, after Alois P. Heinz *) CROSSREFS Cf. A093694. Sequence in context: A095091 A131412 A345448 * A216633 A295145 A151998 Adjacent sequences: A209630 A209631 A209632 * A209634 A209635 A209636 KEYWORD nonn AUTHOR Thomas Wieder, Mar 11 2012 EXTENSIONS More terms from Alois P. Heinz, Mar 11 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 03:39 EDT 2024. Contains 372782 sequences. (Running on oeis4.)