login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Half the number of (n+1)X8 0..2 arrays with every 2X2 subblock having two or four distinct clockwise edge differences
1

%I #5 Mar 31 2012 12:37:29

%S 6561,242889,9225765,353991129,13642432110,526815563193,

%T 20362314816594,787378099628577,30452815417249224,1177911989563198242,

%U 45563556788314601670,1762509641645545600089,68178848629430688643791

%N Half the number of (n+1)X8 0..2 arrays with every 2X2 subblock having two or four distinct clockwise edge differences

%C Column 7 of A209511

%H R. H. Hardin, <a href="/A209510/b209510.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 105*a(n-1) -4473*a(n-2) +105654*a(n-3) -1580037*a(n-4) +16082595*a(n-5) -116408090*a(n-6) +616031475*a(n-7) -2425718097*a(n-8) +7181467374*a(n-9) -16063429749*a(n-10) +27150592284*a(n-11) -34525830041*a(n-12) +32730104655*a(n-13) -22785383754*a(n-14) +11380763892*a(n-15) -3932260752*a(n-16) +884206944*a(n-17) -115250048*a(n-18) +6527616*a(n-19)

%e Some solutions for n=4

%e ..1..2..0..1..2..0..2..0....1..2..0..1..0..1..2..1....0..1..0..1..0..1..2..0

%e ..2..0..1..2..0..1..0..1....0..1..2..0..1..2..0..2....1..2..1..2..1..2..0..2

%e ..0..1..2..1..2..0..1..2....1..0..1..2..0..1..2..0....2..1..2..1..2..0..1..0

%e ..2..0..1..2..0..1..2..1....2..1..2..0..1..2..0..1....0..2..0..2..1..2..0..1

%e ..0..1..2..0..1..2..0..2....0..2..0..2..0..1..2..0....1..0..2..0..2..0..2..0

%K nonn

%O 1,1

%A _R. H. Hardin_ Mar 09 2012