login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Pell(n)*A008655(n) for n>=1, with a(0)=1, where A008655 lists the coefficients in (theta_3(x)*theta_3(3*x)+theta_2(x)*theta_2(3*x))^4.
4

%I #10 Jan 27 2018 02:29:38

%S 1,24,432,4440,21024,87696,559440,1395264,5728320,23852760,64719648,

%T 183528288,898460640,1765134672,6002425728,21820957200,52895150208,

%U 134056553904,598084104240,1090757945760,3530801969856,11795485116480,26821191064896,65724336729792

%N a(n) = Pell(n)*A008655(n) for n>=1, with a(0)=1, where A008655 lists the coefficients in (theta_3(x)*theta_3(3*x)+theta_2(x)*theta_2(3*x))^4.

%C Compare g.f. to the Lambert series of A008655:

%C 1 + Sum_{n>=1} 24*n^3*x^n/(1-x^n) + 8*(3*n)^3*x^(3*n)/(1-x^(3*n)).

%H G. C. Greubel, <a href="/A209448/b209448.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: 1 + Sum_{n>=1} 24*Pell(n)*n^3*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) + 8*Pell(3*n)*(3*n)^3*x^(3*n)/(1 - A002203(3*n)*x^(3*n) + (-1)^n*x^(6*n)), where A002203(n) = Pell(n-1) + Pell(n+1).

%e G.f.: A(x) = 1 + 24*x + 432*x^2 + 4440*x^3 + 21024*x^4 + 87696*x^5 +...

%e where A(x) = 1 + 1*24*x + 2*216*x^2 + 5*888*x^3 + 12*1752*x^4 + 29*3024*x^5 +...+ Pell(n)*A008655(n)*x^n +...

%t A008655[n_]:= SeriesCoefficient[((EllipticTheta[3, 0, q]^3 + EllipticTheta[3, Pi/3, q]^3 + EllipticTheta[3, 2 Pi/3, q]^3)^4/(3* EllipticTheta[3, 0, q^3])^4), {q, 0, n}]; b:= Table[A008655[n], {n, 0, 102}][[1 ;; ;; 2]]; Join[{1}, Table[Fibonacci[n, 2]*b[[n + 1]], {n, 1, 50}]] (* _G. C. Greubel_, Jan 26 2018 *)

%o (PARI) {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}

%o {A002203(n)=Pell(n-1)+Pell(n+1)}

%o {a(n)=polcoeff(1 + sum(m=1,n, 24*Pell(m)*m^3*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m) +x*O(x^n)) + 8*Pell(3*m)*(3*m)^3*x^(3*m)/(1-A002203(3*m)*x^(3*m)+(-1)^m*x^(6*m) +x*O(x^n)) ),n)}

%o for(n=0,40,print1(a(n),", "))

%Y Cf. A008655, A205968, A209447, A209449, A204270, A000129 (Pell), A002203.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Mar 10 2012