OFFSET
0,2
COMMENTS
First column just gives the tribonacci numbers.
n offset is zero, but d offset is one so 1st entry is a(0,1).
LINKS
G. C. Greubel, Table of n, a(n) for the first 25 rows, flattened
FORMULA
T(n,d) = Product_{i=0..d-1} Tr(floor(n + i)/d) + 2) where Tr(n) is the n-th tribonacci number.
EXAMPLE
1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ...
2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ...
4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ...
7, 8, 8, 8, 8, 8, 8, 8, 8, 8 ...
13, 16, 16, 16, 16, 16, 16, 16, 16, 16 ...
24, 28, 32, 32, 32, 32, 32, 32, 32, 32 ...
44, 49, 64, 64, 64, 64, 64, 64, 64, 64 ...
81, 91, 112, 128, 128, 128, 128, 128, 128, 128 ...
149, 169, 196, 256, 256, 256, 256, 256, 256, 256 ...
274, 312, 343, 448, 512, 512, 512, 512, 512, 512 ...
504, 576, 637, 784, 1024, 1024, 1024, 1024, 1024, 1024 ...
............................................................
For a(5,2) we count subsets of {1,...,5} that do not contain {1,3,5}, the only d=2 AP possible here. There are 4 subsets containing {1,3,5} so a(5,2) = 2^5-4 = 28.
MATHEMATICA
Trib[0] = 0; Trib[1] = 1; Trib[2] = 1; Trib[n_] := Trib[n - 1] + Trib[n - 2] + Trib[n - 3]; T[n_, d_] := Product[Trib[Floor[(n + i)/d] + 2], {i, 0, d - 1}]; Flatten[Table[T[j - i, i + 1], {j, 0, 15}, {i, 0, j}]]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
David Nacin, Mar 09 2012
STATUS
approved