%I #26 Feb 24 2023 02:36:52
%S 22193,25373,69539,107509,111373,167917,200807,202291,208591,217253,
%T 221873,236573,238573,250073,250307,274591,290539,355573,373073,
%U 382373,404273,407083,415391,417383,439009,441193,447907,515173,542837,581873,582083,591673
%N Each entry is the first of three consecutive primes with equal digital sum.
%C Subsequence of A066540.
%C The differences between the three primes of the triple are multiples of 18.
%H Harvey P. Dale, <a href="/A209396/b209396.txt">Table of n, a(n) for n = 1..1000</a>
%e 200807 is in the sequence because 200807, 200843, 200861 are consecutive primes and sum_of_digits(200807)= sum_of_digits(200843)= sum_of_digits(200861)=17
%t Select[Prime[Range[100000]], Total[IntegerDigits[#]] == Total[IntegerDigits[NextPrime[#, 1]]] == Total[IntegerDigits[NextPrime[#, 2]]] &] (* _T. D. Noe_, Mar 13 2012 *)
%t Transpose[Select[Partition[Prime[Range[50000]],3,1],Differences[ Total/@ (IntegerDigits/@#)]=={0,0}&]][[1]] (* _Harvey P. Dale_, Jul 22 2016 *)
%Y Cf. A066540, A209663, A210629.
%K nonn,base
%O 1,1
%A _Antonio Roldán_, Mar 13 2012