The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A209388 Product of positive odd integers smaller than n and relatively prime to n. 2
 1, 1, 1, 3, 3, 5, 15, 105, 35, 189, 945, 385, 10395, 19305, 1001, 2027025, 2027025, 85085, 34459425, 8729721, 230945, 1249937325, 13749310575, 37182145, 4216455243, 608142583125, 929553625, 1452095555625, 213458046676875, 215656441, 6190283353629375 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS This is the product over the smallest positive representatives of the odd reduced residue class Modd n. For Modd n (not to be confused with mod n) see a comment on A203571. This reduced residue class has delta(n)=A055034(n) members. The Moddn values of this sequence are given in A209339. LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..200 FORMULA a(n) = product(2*k+1, k from {0,1,...,floor((n-2)/2)} and gcd(2*k+1,n) =1). a(1):=1 (empty product). a(n) = product(k, k from {1,...,n-1} and gcd(k,2*n) = 1). a(1):=1 (empty product). a(prime(n)) = (prime(n)-2)!! = A207332(n), for primes prime(n)=A000040(n). EXAMPLE a(4)= 1*3 = 3, a(5) = 1*3 =3, a(15) = 1*7*11*13 = 1001, delta(15)=phi(2*15)/2) = 1*2*4/2 = 4 = A055034(15). MATHEMATICA Table[Times @@ Select[Range[1, n, 2], GCD[n, #] == 1 &], {n, 40}] (* T. D. Noe, Mar 12 2012 *) PROG (PARI) a(n) = prod(k=1, n, if (k % 2, k, 1)); \\ Michel Marcus, Mar 12 2022 CROSSREFS Cf. A001783 (mod n analog), A207332, A209339. Sequence in context: A069834 A064038 A051684 * A195583 A370973 A139431 Adjacent sequences: A209385 A209386 A209387 * A209389 A209390 A209391 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Mar 10 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 21 06:22 EDT 2024. Contains 373540 sequences. (Running on oeis4.)