login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209367
Number of n X 1 1..3 arrays with no element with value z exactly a city block distance of z from another element with value z.
1
3, 8, 19, 35, 64, 110, 185, 322, 599, 1084, 1902, 3280, 5816, 10425, 18711, 33023, 58229, 102865, 183340, 326023, 578770, 1023268, 1814036, 3218397, 5719285, 10142300, 17984603, 31872737, 56560901, 100345791, 178058874, 315719677
OFFSET
1,1
COMMENTS
Column 1 of A209374.
LINKS
FORMULA
Empirical: a(n) = a(n-2) + 4*a(n-4) + 4*a(n-5) + 5*a(n-6) - a(n-7) - 5*a(n-8) - 5*a(n-9) - 5*a(n-10) + a(n-11) + 2*a(n-12) for n>14.
Empirical g.f.: x*(3 + 8*x + 16*x^2 + 27*x^3 + 33*x^4 + 31*x^5 - 2*x^6 - 41*x^7 - 54*x^8 - 35*x^9 - 12*x^10 - 11*x^11 - 9*x^12 - 2*x^13) / ((1 - x)*(1 + x - 4*x^4 - 8*x^5 - 13*x^6 - 12*x^7 - 7*x^8 - 2*x^9 + 3*x^10 + 2*x^11)). - Colin Barker, Jul 09 2018
EXAMPLE
All solutions for n=5:
..2....1....2....3....3....2....3....3....3....2....1....2....3....3
..3....3....1....3....2....1....1....1....2....3....2....3....1....3
..1....1....3....1....3....3....2....2....2....3....2....1....2....1
..2....2....3....2....1....3....2....1....1....2....3....2....2....2
..1....1....2....2....3....1....1....3....3....2....3....2....3....1
CROSSREFS
Cf. A209374.
Sequence in context: A184444 A139020 A147358 * A086167 A083186 A055341
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 07 2012
STATUS
approved