login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 5-bead necklaces labeled with numbers -n..n allowing reversal, with sum zero with no three beads in a row equal.
1

%I #11 Jul 09 2018 08:23:04

%S 5,40,145,400,883,1724,3045,5026,7827,11684,16795,23446,31879,42430,

%T 55379,71118,89965,112362,138671,169384,204901,245770,292429,345476,

%U 405393,472828,548301,632516,726031,829600,943825,1069510,1207295

%N Number of 5-bead necklaces labeled with numbers -n..n allowing reversal, with sum zero with no three beads in a row equal.

%C Row 5 of A209344.

%H R. H. Hardin, <a href="/A209346/b209346.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 2*a(n-1) + a(n-2) - 3*a(n-3) - a(n-4) + a(n-5) + 3*a(n-6) - a(n-7) - 2*a(n-8) + a(n-9).

%F Empirical g.f.: x*(5 + 30*x + 60*x^2 + 85*x^3 + 63*x^4 + 28*x^5 + 4*x^6 + x^7) / ((1 - x)^5*(1 + x)^2*(1 + x + x^2)). - _Colin Barker_, Jul 09 2018

%e Some solutions for n=10:

%e -9 -7 -10 -5 -10 -10 -8 -7 -8 -7 -9 -7 -4 -6 -10 -8

%e 5 4 -4 -1 -4 -5 -7 -3 1 0 -4 2 -2 1 -4 -3

%e 7 -3 -5 3 4 -1 8 -3 6 -1 9 -3 -2 4 10 8

%e -9 -1 10 3 5 10 3 3 -1 3 3 2 10 -2 6 1

%e 6 7 9 0 5 6 4 10 2 5 1 6 -2 3 -2 2

%Y Cf. A209344.

%K nonn

%O 1,1

%A _R. H. Hardin_, Mar 06 2012