login
A209330
Triangle defined by T(n,k) = binomial(n^2, n*k), for n>=0, k=0..n, as read by rows.
10
1, 1, 1, 1, 6, 1, 1, 84, 84, 1, 1, 1820, 12870, 1820, 1, 1, 53130, 3268760, 3268760, 53130, 1, 1, 1947792, 1251677700, 9075135300, 1251677700, 1947792, 1, 1, 85900584, 675248872536, 39049918716424, 39049918716424, 675248872536, 85900584, 1, 1
OFFSET
0,5
COMMENTS
Column 1 equals A014062.
Row sums equal A167009.
Antidiagonal sums equal A209331.
Ignoring initial row T(0,0), equals the logarithmic derivative of the g.f. of triangle A209196.
EXAMPLE
The triangle of coefficients C(n^2,n*k), n>=k, k=0..n, begins:
1;
1, 1;
1, 6, 1;
1, 84, 84, 1;
1, 1820, 12870, 1820, 1;
1, 53130, 3268760, 3268760, 53130, 1;
1, 1947792, 1251677700, 9075135300, 1251677700, 1947792, 1;
1, 85900584, 675248872536, 39049918716424, 39049918716424, 675248872536, 85900584, 1; ...
MATHEMATICA
Table[Binomial[n^2, n*k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Jan 05 2018 *)
PROG
(PARI) {T(n, k)=binomial(n^2, n*k)}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A014062 (column 1), A167009 (row sums), A209331, A209196.
Cf. related triangles: A209196 (exp), A228836, A228832, A226234.
Cf. A206830.
Sequence in context: A172375 A075377 A046792 * A357297 A111825 A085552
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Mar 06 2012
STATUS
approved