Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Jan 24 2022 17:08:08
%S 0,0,2,24,324,5120,93750,1959552,46118408,1207959552,34867844010,
%T 1100000000000,37661140520652,1390911669927936,55123269399790046,
%U 2333521433367183360,105094533691406250000,5017514388048998039552,253135520137219049838162,13456471561751415850795008
%N Number of elements whose preimage is the empty set summed over all functions f:{1,2,...,n}->{1,2,...,n}.
%C a(n)/n^n is the expected value of the number of such elements which approaches n/e as n gets large.
%C a(n) = Sum_{k=1..n} A219859(n,k)*k.
%C a(n) = 2 * A109391(n-1) = 2 * A000217(n-1) * A000312(n-1) for n>0.
%C a(n-1) is the number of length-n words of n-1 letters where adjacent letters are distinct, see example. - _Joerg Arndt_, Jun 10 2013
%F a(n) = n*(n - 1)^n.
%e From _Joerg Arndt_, Jun 10 2013: (Start)
%e There are a(4-1)=a(3)=24 length-4 words of 3 letters (0,1,2) where adjacent letters are distinct:
%e 01: [ 0 1 0 1 ]
%e 02: [ 0 1 0 2 ]
%e 03: [ 0 1 2 0 ]
%e 04: [ 0 1 2 1 ]
%e 05: [ 0 2 0 1 ]
%e 06: [ 0 2 0 2 ]
%e 07: [ 0 2 1 0 ]
%e 08: [ 0 2 1 2 ]
%e 09: [ 1 0 1 0 ]
%e 10: [ 1 0 1 2 ]
%e 11: [ 1 0 2 0 ]
%e 12: [ 1 0 2 1 ]
%e 13: [ 1 2 0 1 ]
%e 14: [ 1 2 0 2 ]
%e 15: [ 1 2 1 0 ]
%e 16: [ 1 2 1 2 ]
%e 17: [ 2 0 1 0 ]
%e 18: [ 2 0 1 2 ]
%e 19: [ 2 0 2 0 ]
%e 20: [ 2 0 2 1 ]
%e 21: [ 2 1 0 1 ]
%e 22: [ 2 1 0 2 ]
%e 23: [ 2 1 2 0 ]
%e 24: [ 2 1 2 1 ]
%e (End)
%t Table[n (n-1)^n,{n,0,20}]
%o (PARI) a(n) = n*(n-1)^n; \\ _Michel Marcus_, Aug 22 2017
%Y Cf. A219859.
%K nonn,easy
%O 0,3
%A _Geoffrey Critzer_, Jan 16 2013