Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Feb 15 2022 12:54:40
%S 1,2,1,2,3,1,3,2,4,1,3,4,2,5,1,4,3,5,2,6,1,4,5,3,6,2,7,1,5,4,6,3,7,2,
%T 8,1,5,6,4,7,3,8,2,9,1,6,5,7,4,8,3,9,2,10,1,6,7,5,8,4,9,3,10,2,11,1
%N Second inverse function (numbers of rows) for pairing function A185180.
%H Boris Putievskiy, <a href="/A209278/b209278.txt">Rows n = 1..140 of triangle, flattened</a>
%H Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations Integer Sequences And Pairing Functions</a>, arXiv:1212.2732 [math.CO], 2012.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PairingFunction.html">Pairing functions</a>
%F a(n) = floor((A003056(n)+3)/2) + floor(A002260(n)/2)*(-1)^(A002260(n)+A003056(n)).
%F a(n)= floor((t+3)/2)+ floor(i/2)*(-1)^(i+t),
%F where t=floor((-1+sqrt(8*n-7))/2), i=n-t*(t+1)/2.
%F T(r,2s-1)=s, T(r,2s)= r+s. (When read as square array by antidiagonals.)
%e The start of the sequence as table T(r,s) r,s >0 read by antidiagonals:
%e 1...2...2...3...3...4...4...5...
%e 1...3...2...4...3...5...4...6...
%e 1...4...2...5...3...6...4...7...
%e 1...5...2...6...3...7...4...8...
%e 1...6...2...7...3...8...4...9...
%e 1...7...2...8...3...9...4..10...
%e 1...8...2...9...3..10...4..11...
%e . . .
%e The start of the sequence as triangle array read by rows:
%e 1;
%e 2, 1;
%e 2, 3, 1;
%e 3, 2, 4, 1;
%e 3, 4, 2, 5, 1;
%e 4, 3, 5, 2, 6, 1;
%e 4, 5, 3, 6, 2, 7, 1;
%e 5, 4, 6, 3, 7, 2, 8, 1;
%e . . .
%e Row number r contains permutation numbers form 1 to r.
%e If r is odd (r+1)/2, (r+1)/2 +1, (r+1)/2 -1, ... 2, r, 1.
%e If r is even r/2 + 1, r/2, r/2 + 2, ... 2, r, 1.
%t T[r_, s_] := If[OddQ[s], (s+1)/2, r + s/2];
%t Table[T[r-s+1, s], {r, 1, 11}, {s, r, 1, -1}] // Flatten (* _Jean-François Alcover_, Nov 19 2019 *)
%o (Python)
%o t=int((math.sqrt(8*n-7) - 1)/ 2)
%o i=n-t*(t+1)/2
%o result=int((t+3)/2)+int(i/2)*(-1)**(i+t)
%o (PARI) T(r,s)=s\2+if(bittest(s,0),1,r) \\ - _M. F. Hasler_, Jan 15 2013
%Y Cf. A185180, A092542, A092543.
%K nonn,tabl
%O 1,2
%A _Boris Putievskiy_, Jan 15 2013