login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A lower bound on the number of the distinct maximum genus embedding of the complete bipartite graph K(n,n).
0

%I #9 Jun 19 2013 13:54:28

%S 1,0,16,0,7739670528,0,137105941502361600000000000000,0,

%T 6990502336758588607110928994980286070521856000000000000000000,0

%N A lower bound on the number of the distinct maximum genus embedding of the complete bipartite graph K(n,n).

%C Theorem A, p. 3, of Dong.

%H Guanghua Dong, Han Ren, Ning Wang, Yuanqiu Huang, <a href="http://arxiv.org/abs/1203.0855">Lower bound on the number of the maximum genus embedding of K_{n,n}</a>, arXiv:1203.0855 [math.CO]

%F For n odd, a(n) = 2^((n-1)/2)*(n-2)!!^n*(n-1)!^n; otherwise a(n) = 0.

%o (PARI) a(n)=if(n%2,2^(n\2)*prod(i=1,n\2,2*i-1)^n*(n-1)!^n,0) \\ _Charles R Greathouse IV_, Jun 19 2013

%Y Cf. A000142 (factorial numbers), A001147 (double factorial numbers).

%K nonn,easy

%O 1,3

%A _Jonathan Vos Post_, Mar 06 2012

%E Terms corrected by _Charles R Greathouse IV_, Jun 19 2013