Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Oct 21 2024 17:28:46
%S 1,4,32,487,11113,335745,12607257,565877928,29553415078,1760584360722,
%T 117828762999498,8752769915058447,714626485356930711,
%U 63609663369881873031,6130647517448380412727,636052622643842997577302,70679525819378610579659532,8375262433274665594692923984
%N Column 1 of triangle A209196.
%C G.f. of A209196 is exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, n*k) * y^k ).
%o (PARI) {a(n)=polcoeff(polcoeff(exp(sum(m=1,n,x^m/m*sum(j=0,m,binomial(m^2,m*j)*y^j))+x*O(x^n)),n,x),1,y)}
%o for(n=1,20,print1(a(n),", "))
%K nonn
%O 1,2
%A _Paul D. Hanna_, Mar 05 2012