login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle defined by g.f. A(x,y) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, n*k) * y^k ), as read by rows.
8

%I #16 Mar 30 2012 18:37:37

%S 1,1,1,1,4,1,1,32,32,1,1,487,3282,487,1,1,11113,657573,657573,11113,1,

%T 1,335745,209282906,1513844855,209282906,335745,1,1,12607257,

%U 96673776804,5580284351032,5580284351032,96673776804,12607257,1,1,565877928,61162554558200

%N Triangle defined by g.f. A(x,y) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, n*k) * y^k ), as read by rows.

%H Paul D. Hanna, <a href="/A209196/b209196.txt">Rows n = 0..30, flattened.</a>

%F Column 1 equals A209197.

%F Row sums equal A167006.

%F Antidiagonal sums equal A206830.

%e This triangle begins:

%e 1;

%e 1, 1;

%e 1, 4, 1;

%e 1, 32, 32, 1;

%e 1, 487, 3282, 487, 1;

%e 1, 11113, 657573, 657573, 11113, 1;

%e 1, 335745, 209282906, 1513844855, 209282906, 335745, 1;

%e 1, 12607257, 96673776804, 5580284351032, 5580284351032, 96673776804, 12607257, 1;

%e 1, 565877928, 61162554558200, 31336815578461815, 229089181252258800, 31336815578461815, 61162554558200, 565877928, 1; ...

%e G.f.: A(x,y) = 1 + (1+y)*x + (1+4*y+y^2)*x^2 + (1+32*y+32*y^2+y^3)*x^3 + (1+487*y+3282*y^2+487*y^3+y^4)*x^4 +...

%e The logarithm of the g.f. equals the series:

%e log(A(x,y)) = (1 + y)*x

%e + (1 + 6*y + y^2)*x^2/2

%e + (1 + 84*y + 84*y^2 + y^3)*x^3/3

%e + (1 + 1820*y + 12870*y^2 + 1820*y^3 + y^4)*x^4/4

%e + (1 + 53130*y + 3268760*y^2 + 3268760*y^3 + 53130*y^4 + y^5)*x^5/5 +...

%e in which the coefficients form A209330(n,k) = binomial(n^2, n*k).

%o (PARI) {T(n,k)=polcoeff(polcoeff(exp(sum(m=1,n,x^m/m*sum(j=0,m,binomial(m^2,m*j)*y^j))+x*O(x^n)),n,x),k,y)}

%o for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))

%Y Cf. A209197, A167006, A206830, A209330 (log), A155200.

%K nonn,tabl

%O 0,5

%A _Paul D. Hanna_, Mar 05 2012