login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A209105 Number of 6Xn 0..2 arrays with new values 0..2 introduced in row major order and no element equal to more than one of its immediate leftward or upward or right-upward antidiagonal neighbors 1

%I

%S 122,34096,7154944,1404480904,272236743760,52675800891748,

%T 10191444894367900,1971869773009191300,381529277930963765396,

%U 73820911678439362478268,14283392072671820658161260

%N Number of 6Xn 0..2 arrays with new values 0..2 introduced in row major order and no element equal to more than one of its immediate leftward or upward or right-upward antidiagonal neighbors

%C Row 6 of A209100

%H R. H. Hardin, <a href="/A209105/b209105.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 483*a(n-1) -93045*a(n-2) +9895994*a(n-3) -655000699*a(n-4) +28153218507*a(n-5) -771472287050*a(n-6) +11575521770914*a(n-7) -5333969777492*a(n-8) -3460511755733129*a(n-9) +60619944832280219*a(n-10) -122454879122841094*a(n-11) -9610060024477677636*a(n-12) +119490257201622127599*a(n-13) +207423246569123218904*a(n-14) -15418046735278157348540*a(n-15) +85958015930994934073828*a(n-16) +809517273485108604329443*a(n-17) -10872862333905128370604528*a(n-18) -553924361897541639230341*a(n-19) +628503974578083970787751095*a(n-20) -2441837003902470322705776546*a(n-21) -19135804539591412466515125841*a(n-22) +157196371353874391098869608556*a(n-23) +184930685928293621578721897714*a(n-24) -5212791777478985863598283828640*a(n-25) +8343380811716464763432941624104*a(n-26) +99943078075370200668702342185854*a(n-27) -385486750658814649071993027833855*a(n-28) -947326129545439583693615334446414*a(n-29) +7617076417557384976850188004727513*a(n-30) -1587365613230665275472648686777016*a(n-31) -81893089783126645169411368168862676*a(n-32) +154905729052219569334495329758007735*a(n-33) +392446436386226179411197434377941811*a(n-34) -1789366396909098001371959030444799187*a(n-35) +1364382304774676286186085515863856887*a(n-36) +7450756681407735007607770239017405077*a(n-37) -32742420723798992453476401619165532832*a(n-38) +34882707064638274850232798681677400146*a(n-39) +196690238938567903829556617524922100465*a(n-40) -642195656452343483207376794444201641353*a(n-41) -302741845834579655279069984112105879663*a(n-42) +3898930711936348369962805243570318234338*a(n-43) -2811628196998770649303159460561101126472*a(n-44) -12699154307737793869661985076853426155598*a(n-45) +20357131154883109280177933384191456925974*a(n-46) +20643883539066233274084030626803696790656*a(n-47) -64755513215769597861644458739579161901156*a(n-48) -928177211363479033745240114012556539704*a(n-49) +116393013534805718816923463675254988333020*a(n-50) -62922764613474031277505408520521940164664*a(n-51) -117636718952533538147029798845965591298928*a(n-52) +122662194993078191268927575331077554092224*a(n-53) +53377954500120792927391233551189754963712*a(n-54) -111660132397303689829356851421252048286208*a(n-55) +7919142148317395919389979426042637954304*a(n-56) +51518409827438947321954214341306278669824*a(n-57) -18670349951681657511291462879827883996160*a(n-58) -10933253490659848148544920316312898695168*a(n-59) +6995956832033163694328578109174268706816*a(n-60) +1686799976967671987881917375839533137920*a(n-61) -1253524043678855280232828496400957308928*a(n-62) -906202586627792174825114955918683930624*a(n-63) +309998526763988330640199202118903529472*a(n-64) +148552622821827192644092436874780475392*a(n-65) -20331273732734054176046805671907164160*a(n-66) +93663781756651920952176320882940051456*a(n-67) -77028642178807633010626944466396643328*a(n-68) +1689650677968769324222545429484535808*a(n-69) +8972893867255780734625567627712397312*a(n-70) -855929165188635245245315361739374592*a(n-71) -260331530489786581111126222776041472*a(n-72) for n>76

%e Some solutions for n=4

%e ..0..0..0..1....0..0..1..2....0..0..0..1....0..0..0..0....0..0..1..1

%e ..1..1..2..0....1..2..1..0....2..1..0..2....1..1..1..2....1..2..0..2

%e ..0..1..2..2....2..1..2..1....2..0..1..2....0..2..0..1....2..1..2..1

%e ..0..0..0..2....2..0..1..2....1..0..1..2....2..0..1..0....2..0..1..2

%e ..1..2..0..0....0..2..0..2....0..2..0..2....0..2..2..0....1..2..0..2

%e ..1..0..1..0....0..1..2..1....2..0..1..2....0..1..0..1....1..2..0..2

%K nonn

%O 1,1

%A _R. H. Hardin_ Mar 05 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 5 23:01 EDT 2022. Contains 357261 sequences. (Running on oeis4.)