login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209059
Decimal expansion of the triple integral Integral_{z = 0..1} Integral_{y = 0..1} Integral_{x = 0..1} (x*y*z)^(x*y*z) dx dy dz.
1
8, 3, 4, 9, 3, 0, 1, 1, 0, 6, 3, 6, 2, 2, 3, 5, 9, 3, 5, 1, 0, 3, 3, 8, 6, 9, 0, 7, 7, 8, 2, 2, 1, 6, 6, 0, 2, 8, 6, 6, 0, 3, 2, 2, 5, 0, 1, 2, 2, 4, 4, 3, 5, 5, 1, 3, 7, 4, 7, 8, 3, 9, 9, 2, 0, 8, 3, 5, 7, 6, 6, 5, 2, 3, 9, 4, 5, 6, 4, 1, 1, 2, 1, 2, 8, 1, 9, 4, 4, 8, 6, 3, 2, 4, 5, 6, 8, 9, 2, 7, 0, 0, 6
OFFSET
0,1
COMMENTS
The double integral Integral_{y = 0..1} Integral_{x = 0..1} (x*y)^(x*y) dx dy equals Integral_{x = 0..1} x^x dx, which is listed as A083648.
FORMULA
The triple integral is most conveniently estimated from the identity Integral_{z = 0..1} Integral_{y = 0..1} Integral_{z = 0..1} (x*y*z)^(x*y*z) dx dy dz = (1/2)*Sum_{n >= 1} (-1)^(n+1)*(1/n^n + 1/n^(n+1)).
EXAMPLE
0.83493011063622359351...
MATHEMATICA
digits = 103; 1/2*NSum[ (-1)^(n+1)*(1/n^n + 1/n^(n+1)), {n, 1, Infinity}, WorkingPrecision -> digits+10, NSumTerms -> 100] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 15 2013, from formula *)
CROSSREFS
KEYWORD
nonn,easy,cons
AUTHOR
Peter Bala, Mar 04 2012
STATUS
approved