|
|
A209008
|
|
Number of 4-bead necklaces labeled with numbers -n..n not allowing reversal, with sum zero and first and second differences in -n..n.
|
|
1
|
|
|
1, 3, 5, 10, 16, 26, 38, 55, 75, 101, 131, 168, 210, 260, 316, 381, 453, 535, 625, 726, 836, 958, 1090, 1235, 1391, 1561, 1743, 1940, 2150, 2376, 2616, 2873, 3145, 3435, 3741, 4066, 4408, 4770, 5150, 5551, 5971, 6413, 6875, 7360, 7866, 8396, 8948, 9525, 10125
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5).
G.f.: x*(1 - 2*x^2 + 3*x^3 - x^4) / ((1 - x)^4*(1 + x)).
a(n) = (4*n^3 + 6*n^2 + 20*n + 48) / 48 for n even.
a(n) = (4*n^3 + 6*n^2 + 20*n + 18) / 48 for n odd.
(End)
|
|
EXAMPLE
|
Some solutions for n=6:
-2 0 -3 -3 -1 -3 -2 -3 -2 -3 -1 -2 -1 -2 -1 -2
-2 0 0 -2 1 -3 1 -1 -1 1 -1 1 0 0 0 2
2 0 3 3 -1 3 0 3 2 3 1 1 -1 0 0 0
2 0 0 2 1 3 1 1 1 -1 1 0 2 2 1 0
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|