login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of coefficients of polynomials v(n,x) jointly generated with A208660; see the Formula section.
5

%I #34 Aug 22 2015 01:57:18

%S 1,3,1,5,6,1,7,19,9,1,9,44,42,12,1,11,85,138,74,15,1,13,146,363,316,

%T 115,18,1,15,231,819,1059,605,165,21,1,17,344,1652,2984,2470,1032,224,

%U 24,1,19,489,3060,7380,8378,4974,1624,292,27,1,21,670,5301,16488

%N Triangle of coefficients of polynomials v(n,x) jointly generated with A208660; see the Formula section.

%C For a discussion and guide to related arrays, see A208510.

%C Riordan array ((1+x)/(1-x)^2, x(1+x)/(1-x)^2) (follows from Kruchinin formula). - _Ralf Stephan_, Jan 02 2014

%C From _Peter Bala_, Jul 21 2014: (Start)

%C Let M denote the lower unit triangular array A099375 and for k = 0,1,2,... define M(k) to be the lower unit triangular block array

%C /I_k 0\

%C \ 0 M/

%C having the k x k identity matrix I_k as the upper left block; in particular, M(0) = M. Then the present triangle equals the infinite matrix product M(0)*M(1)*M(2)*... (which is clearly well-defined). See the Example section. (End)

%F u(n,x)=u(n-1,x)+2x*v(n-1,x),

%F v(n,x)=u(n-1,x)+(x+1)*v(n-1,x)+1,

%F where u(1,x)=1, v(1,x)=1.

%F From _Vladimir Kruchinin_, Mar 11 2013: (Start)

%F T(n,k) = sum(i=0..n, binomial(i+k-1,2*k-1)*binomial(k,n-i))

%F ((x+x^2)/(1-x)^2)^k = sum(n>=k, T(n,k)*x^n).

%F T(n,2)=A005900(n).

%F T(2*n-1,n) / n = A003169(n).

%F T(2*n,n) = A156894(n), n>1.

%F sum(k=1..n, T(n,k)) = A003946(n).

%F sum(k=1..n, T(n,k)*(-1)^(n+k)) = A078050(n).

%F n*sum(k=1..n, T(n,k)/k) = A058481(n). (End)

%F Recurrence: T(n+1,k+1) = sum {i = 0..n-k} (2*i + 1)*T(n-i,k). - _Peter Bala_, Jul 21 2014

%e First five rows:

%e 1

%e 3...1

%e 5...6....1

%e 7...19...9....1

%e 9...44...42...12...1

%e First five polynomials v(n,x):

%e 1

%e 3 + x

%e 5 + 6x + x^2

%e 7 + 19x + 9x^2 + x^3

%e 9 + 44x + 42x^2 + 12x^3 + x^4

%e From _Peter Bala_, Jul 21 2014: (Start)

%e With the arrays M(k) as defined in the Comments section, the infinite product M(0*)M(1)*M(2)*... begins

%e /1 \/1 \/1 \ /1 \

%e |3 1 ||0 1 ||0 1 | |3 1 |

%e |5 3 1 ||0 3 1 ||0 0 1 |... = |5 6 1 |

%e |7 5 3 1 ||0 5 3 1 ||0 0 3 1 | |7 19 9 1 |

%e |9 7 5 3 1||0 7 5 3 1||0 0 5 3 1| |9 44 42 12 1 |

%e |... ||... ||... | |...

%e (End)

%t u[1, x_] := 1; v[1, x_] := 1; z = 16;

%t u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];

%t v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;

%t Table[Expand[u[n, x]], {n, 1, z/2}]

%t Table[Expand[v[n, x]], {n, 1, z/2}]

%t cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];

%t TableForm[cu]

%t Flatten[%] (* A208660 *)

%t Table[Expand[v[n, x]], {n, 1, z}]

%t cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];

%t TableForm[cv]

%t Flatten[%] (* A208904 *)

%Y Cf. A208660, A208510. A099375.

%K nonn,tabl

%O 1,2

%A _Clark Kimberling_, Mar 03 2012