login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n-bead necklaces labeled with numbers 1..4 not allowing reversal, with no adjacent beads differing by more than 1.
4

%I #24 Oct 31 2017 10:36:26

%S 4,7,10,18,30,65,128,293,658,1544,3622,8711,20924,50889,124150,304718,

%T 750334,1855429,4600696,11442853,28528618,71294416,178529670,

%U 447923761,1125756860,2833917147,7144466842,18036449390,45591671454,115381885423,292329164912,741411257693,1882219950046,4782783122992,12163730636250

%N Number of n-bead necklaces labeled with numbers 1..4 not allowing reversal, with no adjacent beads differing by more than 1.

%H Andrew Howroyd, <a href="/A208773/b208773.txt">Table of n, a(n) for n = 1..100</a>

%H Arnold Knopfmacher, Toufik Mansour, Augustine Munagi, Helmut Prodinger, <a href="http://arxiv.org/abs/0809.0551">Smooth words and Chebyshev polynomials</a>, arXiv:0809.0551v1 [math.CO], 2008.

%F a(n) = Sum_{ d | n } A215336(d). - _Joerg Arndt_, Aug 13 2012

%F a(n) = (1/n) * Sum_{d | n} totient(n/d) * A124697(n). - _Andrew Howroyd_, Mar 18 2017

%e All solutions for n=3:

%e ..2....4....1....2....1....2....3....3....1....3

%e ..2....4....1....2....1....3....3....4....2....3

%e ..3....4....2....2....1....3....3....4....2....4

%t sn[n_, k_] := 1/n*Sum[ Sum[ EulerPhi[j]*(1 + 2*Cos[i*Pi/(k + 1)])^(n/j), {j, Divisors[n]}], {i, 1, k}]; Table[sn[n, 4], {n, 1, 35}] // FullSimplify (* _Jean-François Alcover_, Oct 31 2017, after _Joerg Arndt_ *)

%o (PARI)

%o /* from the Knopfmacher et al. reference */

%o default(realprecision,99); /* using floats */

%o sn(n,k)=1/n*sum(i=1,k,sumdiv(n,j,eulerphi(j)*(1+2*cos(i*Pi/(k+1)))^(n/j)));

%o vector(66,n, round(sn(n,4)) )

%o /* _Joerg Arndt_, Aug 09 2012 */

%Y Column 4 of A208777.

%Y Cf. A215336 (cyclically smooth Lyndon words with 4 colors).

%K nonn

%O 1,1

%A _R. H. Hardin_, Mar 01 2012