Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 May 21 2021 08:09:47
%S 0,0,0,1,7,37,175,778,3325,13837,56524,227866,909832,3607294,14227447,
%T 55894252,218937532,855650749,3338323915,13007422705,50631143323,
%U 196928737582,765495534433,2974251390529,11552064922624,44856304154086
%N Number of nonisomorphic graded posets with 0 and 1 and non-uniform Hasse graph of rank n, with no 3-element antichain.
%C Uniform used in the sense of Retakh, Serconek and Wilson. We use Stanley's definition of graded poset: all maximal chains have the same length n (which also implies all maximal elements have maximal rank.)
%D R. Stanley, Enumerative combinatorics. Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.
%H Vincenzo Librandi, <a href="/A208737/b208737.txt">Table of n, a(n) for n = 0..1000</a>
%H V. Retakh, S. Serconek, and R. Wilson, <a href="http://arxiv.org/abs/1010.6295">Hilbert Series of Algebras Associated to Directed Graphs and Order Homology</a>, arXiv:1010.6295 [math.RA], 2010-2011.
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Graded_poset">Graded poset</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (10,-36,57,-39,9).
%F a(n) = 10*a(n-1) - 36*a(n-2) + 57*a(n-3) - 39*a(n-4) + 9*a(n-5), a(1) = 0, a(2) = 0, a(3) = 1, a(4) = 7, a(5) = 37.
%F G.f: (x^3 - 3*x^4 + 3*x^5)/(1 - 10*x + 36*x^2 - 57*x^3 + 39*x^4 - 9*x^5); (x^3*(1 - 3*x + 3*x^2)) / ((1 - x) (1 - 3*x) (1 - 6*x + 9*x^2 - 3*x^3)).
%F a(n) = A124292(n) - A124302(n).
%t Join[{0}, LinearRecurrence[{10, -36, 57, -39, 9}, {0, 0, 1, 7, 37}, 40]]
%o (Python)
%o def a(n, d={0:0,1:0,2:0,3:1,4:7,5:37}):
%o if n in d:
%o return d[n]
%o d[n]=10*a(n-1) - 36*a(n-2) + 57*a(n-3) - 39*a(n-4) + 9*a(n-5)
%o return d[n]
%Y Cf. A208736, A206901, A206902, A206947-A206950, A001906, A025192, A081567, A124302, A124292, A088305, A086405, A012781.
%K nonn,easy
%O 0,5
%A _David Nacin_, Mar 01 2012