|
|
A208689
|
|
Number of 3 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 1 1 and 1 0 1 vertically.
|
|
2
|
|
|
6, 36, 78, 282, 768, 2430, 7086, 21588, 64230, 193554, 579264, 1740054, 5216502, 15655428, 46956702, 140885610, 422631744, 1267935822, 3803741790, 11411331636, 34233822966, 102701747106, 308104791168, 924315101862, 2772944127078
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = 2*a(n-1) + 4*a(n-2) - 3*a(n-3).
G.f.: 6*x*(1 + 4*x - 3*x^2) / ((1 - 3*x)*(1 + x - x^2)).
a(n) = 2^(-n)*(5*6^(2+n) + (75-27*sqrt(5))*(-1+sqrt(5))^n + 3*(-1-sqrt(5))^n*(25+9*sqrt(5))) / 55.
(End)
|
|
EXAMPLE
|
Some solutions for n=4:
..0..1..0..0....1..1..0..1....0..1..1..0....1..1..0..0....0..1..0..0
..1..1..1..0....1..1..1..1....0..1..1..0....0..1..0..1....1..1..1..1
..0..1..0..1....0..1..0..0....1..0..1..1....0..1..1..0....0..1..0..0
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|