Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #53 Nov 17 2024 13:54:56
%S 1,71,14641,6242711,4555133281,5076970085351,8024733763147921,
%T 17074591123571719991,47056485265721520250561,
%U 163059403058191163396938631,693897612604719894794535433201
%N Kashaev's invariant for the (5,2)-torus knot (Solomon's seal knot).
%C In general, Kashaev’s invariant for the (2*m+1,2)-torus knot has e.g.f. 1/2*sin(2*x)/cos((2*m+1)*x). Case m = 1 is A002439. For other examples see A208680 and A208681.
%C From _Peter Bala_, Dec 20 2021: (Start)
%C We make the following conjectures:
%C 1) Taking the sequence modulo an integer k gives an eventually periodic sequence with period dividing phi(k). For example, the sequence taken modulo 9 begins [1, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, ...] with an apparent pre-period of length 1 and a period [8, 7, 5, 1, 2, 4] of length 6 = phi(9).
%C 2) For i >= 0, define a_i(n) = a(n+i). Then for each i the Gauss congruences a_i(n*p^k) == a_i(n*p^(k-1)) ( mod p^k ) hold for all prime p and positive integers n and k. If true, then for each i the expansion of exp(Sum_{n >= 1} a_i(n)*x^n/n) has integer coefficients. (End)
%H Peter Bala, <a href="/A002439/a002439.pdf">Some S-fractions related to the expansions of sin(ax)/cos(bx) and cos(ax)/cos(bx)</a>
%H K. Hikami, <a href="http://www.emis.de/journals/EM/expmath/volumes/12/12.3/Hikami.pdf">Volume Conjecture and Asymptotic Expansion of q-Series</a>, Experimental Mathematics Vol. 12, Issue 3 (2003).
%F E.g.f.: (1/2)*sin(2*x)/cos(5*x) = x + 71*x^3/3! + 14641*x^5/5! + ....
%F Define F(q) := Sum_{m,n >= 0} (q^(-m*n)*product {i = 1.. m+n} (1-q^i)). For the expansion of F(1-q) and F(exp(-t)) see A208733 and A208730 respectively. Kitami gives the conjectural e.g.f. exp(-9*t)*F(exp(-40*t)) = 1 + 71*t + 14641*t^2/2! + ....
%F a(n) = (-1)^n/(4*n+4)*20^(2*n+1)*Sum_{k = 1..20} X(k)*B(2*n+2,k/20), where B(n,x) is a Bernoulli polynomial and X(n) is a periodic function modulo 20 given by X(n) = 0 except for X(20*n+3) = X(20*n+17) = 1 and X(20*n+7) = X(20*n+13) = -1.
%F a(n) = 1/2*(-1)^(n+1)*L(-2*n-1,X) in terms of the associated L-series attached to the periodic arithmetical function X.
%F a(n) ~ (2*n-1)! * 2^(2*n-3/2) * 5^(2*n-1) * sqrt(5-sqrt(5)) / Pi^(2*n). - _Vaclav Kotesovec_, Aug 30 2015
%F From _Peter Bala_, May 11 2017: (Start)
%F Let X = 40*x. G.f. with offset 0: A(x) = 1 + 71*x + 14641*x^2 + ... = 1/(1 + 9*x - 2*X/(1 - 3*X/(1 + 9*x - 9*X/(1 - 11*X/(1 + 9*x - 21*X/(1 - 24*X/(1 + 9*x - ...))))))), where the sequence [2, 3, 9, 11, ..., n*(5*n - 1)/2, n*(5*n + 1)/2, ...] of unsigned coefficients in the partial numerators of the continued fraction is A057569.
%F A(x) = 1/(1 + 49*x - 3*X/(1 - 2*X/(1 + 49*x - 11*X/(1 - 9*X/(1 + 49*x - 24*X/(1 - 21*X/(1 + 49*x - 42*X/(1 - 38*X/(1 + 49*x - ...))))))))), where the sequence [3, 2, 11, 9, 24, 21, ...] of unsigned coefficients in the partial numerators of the continued fraction is obtained by swapping pairs of adjacent terms of A057569. Let B(x) = 1/(1 - 9*x)*A(x/(1 - 9*x)), that is, B(x) is the 9_th binomial transform of A(x). Then B(x/40) = 1 + 2*x + 10*x^2 + 104*x^3 + ... is the o.g.f. for A208730. (End)
%F From _Peter Bala_, Dec 20 2021: (Start)
%F a(1) = 1, a(n) = (-4)^(n-1) - Sum_{k = 1..n} (-25)^k*C(2*n-1,2*k)*a(n-k).
%F a(n) == 71^(n-1) ( mod (2^7)*3*(5^2) ). (End)
%F a(n) = 5*10^(2*n - 2)*(-1)^n*E(2*n - 1, 3/10), where E(n,x) is the n-th Euler polynomial in x (A060096/A060097). - _Miles Wilson_, Aug 05 2024
%p A208679 := proc(n) option remember; if n = 1 then 1; else (-4)^(n-1) - add((-25)^k*binomial(2*n-1,2*k)*procname(n-k),k=1..n) ; end if; end proc:
%p seq(A208679(n),n = 1..20) # _Peter Bala_, Dec 20 2021
%p A208679 := 5*10^(2*n-2)*(-1)^n*euler(2*n-1,3/10):
%p seq(A208679(n),n = 1..11); # _Miles Wilson_, Aug 05 2024
%t nmax = 20; Table[(CoefficientList[Series[1/2*Sin[2*x]/Cos[5*x], {x, 0, 2*nmax}], x] * Range[0, 2*nmax - 1]!)[[j]], {j, 2, 2*nmax + 1, 2}] (* _Vaclav Kotesovec_, Aug 30 2015 *)
%o (PARI) my(x='x+O('x^30), v=Vec(serlaplace((1/2)*sin(2*x)/cos(5*x)))); vector(#v\2,n,v[2*n-1]) \\ _Joerg Arndt_, Aug 08 2024
%Y Cf. A002439 ((3,2)-torus knot), A208680, A208681, A208730, A208733, A057569.
%Y Cf. A060096, A060097.
%K nonn,easy
%O 1,2
%A _Peter Bala_, Mar 01 2012