This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A208662 Smallest m such that the n-th odd prime is the smallest prime for all decompositions of 2*m into two primes. 3
 3, 6, 15, 62, 61, 209, 49, 110, 173, 154, 637, 572, 481, 278, 1256, 1763, 691, 928, 2309, 496, 1909, 3716, 6389, 2989, 13049, 1321, 11633, 5134, 9848, 3004, 17096, 11303, 2686, 18884, 6781, 4798, 11416, 29957, 3713, 44393, 25156, 48884, 24001, 56279, 30031 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A002373(a(n)) = A065091(n) and A002373(m) != A065091(n) for m < a(n). LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..120 Eric Weisstein's World of Mathematics, Goldbach Partition Wikipedia, Goldbach's conjecture EXAMPLE n=3, a(3)=15: 7 is the 3rd odd prime and the smallest prime in all Goldbach decompositions of 2*15 = 30 = {7+23, 11+19, 13+17}, and 7 doesn't occur as smallest prime in all Goldbach decompositions for even numbers less than 30. PROG (Haskell) a208662 n = head [m | m <- [1..], let p = a065091 n,    let q = 2 * m - p, a010051' q == 1,    all ((== 0) . a010051') \$ map (2 * m -) \$ take (n - 1) a065091_list] -- Reinhard Zumkeller, Aug 11 2015, Feb 29 2012 CROSSREFS Cf. A002373, A065091, A260485. Sequence in context: A267552 A241269 A102356 * A102936 A009192 A013273 Adjacent sequences:  A208659 A208660 A208661 * A208663 A208664 A208665 KEYWORD nonn AUTHOR Reinhard Zumkeller, Feb 29 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 10:48 EDT 2019. Contains 323529 sequences. (Running on oeis4.)