

A208662


Smallest m such that the nth odd prime is the smallest prime for all decompositions of 2*m into two primes.


3



3, 6, 15, 62, 61, 209, 49, 110, 173, 154, 637, 572, 481, 278, 1256, 1763, 691, 928, 2309, 496, 1909, 3716, 6389, 2989, 13049, 1321, 11633, 5134, 9848, 3004, 17096, 11303, 2686, 18884, 6781, 4798, 11416, 29957, 3713, 44393, 25156, 48884, 24001, 56279, 30031
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

A002373(a(n)) = A065091(n) and A002373(m) != A065091(n) for m < a(n).


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..120
Eric Weisstein's World of Mathematics, Goldbach Partition
Wikipedia, Goldbach's conjecture
Index entries for sequences related to Goldbach conjecture


EXAMPLE

n=3, a(3)=15: 7 is the 3rd odd prime and the smallest prime in all Goldbach decompositions of 2*15 = 30 = {7+23, 11+19, 13+17}, and 7 doesn't occur as smallest prime in all Goldbach decompositions for even numbers less than 30.


PROG

(Haskell)
a208662 n = head [m  m < [1..], let p = a065091 n,
let q = 2 * m  p, a010051' q == 1,
all ((== 0) . a010051') $ map (2 * m ) $ take (n  1) a065091_list]
 Reinhard Zumkeller, Aug 11 2015, Feb 29 2012


CROSSREFS

Cf. A002373, A065091, A260485.
Sequence in context: A267552 A241269 A102356 * A102936 A009192 A013273
Adjacent sequences: A208659 A208660 A208661 * A208663 A208664 A208665


KEYWORD

nonn


AUTHOR

Reinhard Zumkeller, Feb 29 2012


STATUS

approved



