login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 6-bead necklaces labeled with numbers -n..n not allowing reversal, with sum zero.
2

%I #13 Mar 18 2018 17:54:04

%S 26,297,1564,5457,14838,34153,69784,130401,227314,374825,590580,

%T 895921,1316238,1881321,2625712,3589057,4816458,6358825,8273228,

%U 10623249,13479334,16919145,21027912,25898785,31633186,38341161,46141732,55163249

%N Number of 6-bead necklaces labeled with numbers -n..n not allowing reversal, with sum zero.

%C Row 6 of A208597.

%H R. H. Hardin, <a href="/A208600/b208600.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = (44/15)*n^5 + (22/3)*n^4 + (23/3)*n^3 + (14/3)*n^2 + (12/5)*n + 1.

%F Conjectures from _Colin Barker_, Mar 07 2018: (Start)

%F G.f.: x*(26 + 141*x + 172*x^2 + 8*x^3 + 6*x^4 - x^5) / (1 - x)^6.

%F a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.

%F (End)

%e Some solutions for n=4:

%e -4 -4 -4 -3 -4 -2 -4 -4 -4 -4 -3 -4 -4 -3 -3 -1

%e 4 3 2 2 -3 -2 -1 2 0 -1 3 4 2 -1 3 0

%e 0 2 -1 3 -2 2 0 -3 4 2 -3 -2 1 2 0 -1

%e 1 1 -3 0 3 0 -1 0 -1 1 3 0 3 -2 -2 0

%e -1 1 3 0 4 -2 4 3 4 4 -3 1 -2 4 0 -1

%e 0 -3 3 -2 2 4 2 2 -3 -2 3 1 0 0 2 3

%K nonn

%O 1,1

%A _R. H. Hardin_, Feb 29 2012