Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Jul 03 2018 12:40:35
%S 9,81,126,324,828,2124,5436,13932,35676,91404,234108,599724,1536156,
%T 3935052,10079676,25819884,66138588,169418124,433972476,1111644972,
%U 2847534876,7294114764,18684254268,47860713324,122597730396,314040583692
%N Number of 4 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 1 0 and 1 1 1 vertically.
%C Row 4 of A208501.
%H R. H. Hardin, <a href="/A208502/b208502.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = a(n-1) + 4*a(n-2) for n>4.
%F Conjectures from _Colin Barker_, Jul 03 2018: (Start)
%F G.f.: 9*x*(1 + 8*x + x^2 - 14*x^3) / (1 - x - 4*x^2).
%F a(n) = (9*2^(-6-n)*((1-sqrt(17))^n*(-109+27*sqrt(17)) + (1+sqrt(17))^n*(109+27*sqrt(17)))) / sqrt(17) for n>2.
%F (End)
%e Some solutions for n=4:
%e ..0..1..0..0....1..1..1..0....1..0..1..0....1..0..1..1....1..1..0..0
%e ..0..1..1..0....0..1..0..1....1..1..0..1....1..0..1..1....1..0..1..0
%e ..1..0..1..0....1..0..1..1....0..1..1..1....0..1..0..0....0..1..1..0
%e ..1..1..0..1....1..1..1..0....1..0..1..0....1..1..1..1....0..1..0..1
%Y Cf. A208501.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 27 2012